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Introduction

Abstract

Objective: ALS is a rapidly progressive, fatal disorder caused by motor neuron
degeneration, for which there is a great unmet therapeutic need. AMX0035, a
combination of sodium phenylbutyrate (PB) and taurursodiol (TUDCA,
TURSO), has shown promising results in early ALS clinical trials, but its mech-
anisms of action remain to be elucidated. Therefore, our goal was to obtain an
unbiased landscape of the molecular effects of AMX0035 in ALS patient-derived
cells. Methods: We investigated the transcriptomic and metabolomic profiles of
primary skin fibroblasts from sporadic ALS patients and healthy controls
(n = 12/group) treated with PB, TUDCA, or PB-TUDCA combination
(Combo). Data were evaluated with multiple approaches including differential
gene expression and metabolite abundance, Gene Ontology and metabolic path-
way analysis, weighted gene co-expression correlation analysis (WGCNA), and
combined multiomics integrated analysis. Results: Combo changed many more
genes and metabolites than either PB or TUDCA individually. Most changes
were unique to Combo and affected the expression of genes involved in nucleo-
cytoplasmic transport, unfolded protein response, mitochondrial function, RNA
metabolism, and innate immunity. WGCNA showed significant correlations
between ALS gene expression modules and clinical parameters that were abol-
ished by Combo treatment. Interpretation: This study is the first to explore the
molecular effects of Combo in ALS patient-derived cells. It shows that Combo
has a greater and distinct impact compared with the individual compounds and
provides clues to drug targets and mechanisms of action, which may underlie
the benefits of this investigational drug combination.

(fALS). However, the majority of cases are sporadic
(sALS) and have no defined underlying gene mutation.’

ALS is a progressive and fatal neurodegenerative disorder
that affects approximately every 5 per 100,000 people in
the United States." The disease involves degeneration of
both upper and lower motor neurons, causing muscle
weakness and atrophy, spasticity, dysphagia, and neu-
rocognitive symptoms. Eventual paralysis and death due
to respiratory insufficiency typically occur within 2-
5 years of diagnosis.” More than 30 genes have been iden-
tified as major risk factors for ALS, and 10%—15% of ALS
cases are associated with a causative underlying mutation
in one or more of these genes, termed familial ALS

© 2022 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.

Diverse pathophysiological mechanisms have been pro-
posed to contribute to motor neuron degeneration in
ALS, including gliosis/inflammation, neuronal hyper-
excitability, oxidative stress, disruptions in proteostasis,
endoplasmic reticulum (ER) stress, alterations in RNA
processing, abnormal stress granule dynamics, impaired
vesicular transport, mitochondrial dysfunction, impair-
ment in DNA damage repair, and alterations of nuclear
transport.” The pathophysiology of ALS likely results from
a combination of these mechanisms, which converge to
cause motor neuron degeneration. The lack of a clear
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genetic cause for sALS precluding the development of ani-
mal models and the etiological heterogeneity has thus far
hindered the development of successful therapies. The
only FDA-approved drugs for ALS are Edaravone, which
is thought to decrease oxidative stress, and Riluzole,
which reduces excitotoxicity.” The clinical efficacy of these
treatments is very modest, and there is an urgent need for
new treatments with a greater ability to slow functional
decline and extend survival.

Recently, the combination of taurursodiol (also known
as tauroursodeoxycholic acid, TUDCA, TURSO) and
sodium phenylbutyrate (PB) was investigated in a double-
blind, randomized, multi-site, placebo-controlled phase 2
clinical trial (CENTAUR). The trial hit its primary end-
point, the rate of change in the ALS Functional Rating
Scale.* Importantly, the long-term analysis showed that
the median survival was increased by 6.5 months in the
original treatment group compared with the placebo
group.” Moreover, the survival increased by 18.8 months
for the original treatment group that continued treatment
in the open-label extension relative to the original placebo
group of patients who did not enter the extension.

TUDCA is a hydrophilic secondary bile acid produced
by the conjugation of taurine to ursodeoxycholic acid.
TUDCA is produced in the liver but can also be synthe-
sized in the brain.” Bile acids can act as signaling mole-
cules, activating diverse pathways such as Nf-kB, MAPK,
PI3K, ERK, PLCy, PKA, and Akt.”” They can act as a
chemical chaperone and alleviate ER stress due to mis-
folded proteins'® and can block apoptosis by enhancing
inner mitochondrial membrane integrity, reducing reac-
tive oxygen species (ROS) production, and increasing
oxidative phosphorylation.'" Additionally, it modulates
epigenetics by reducing the activity and/or expression of
histone deacetylases (HDACs) and histone acetyltrans-
ferases (HATs).” TUDCA has shown anti-inflammatory
effects in several animal and cell models of neurodegener-
ation.>'?

PB is an aromatized fatty acid that is metabolized into
phenylacetate through B-oxidation, which can be then
conjugated to glutamine to form phenylacetylglutamine,
which acts as an ammonia sink. PB is approved by the
FDA for the treatment of urea cycle disorders."” PB is an
HDAC inhibitor and modulates chromatin remodeling
and transcription by increasing histone acetylation.'*'?
PB is a chemical chaperone and is protective in encepha-
lopathies caused by protein instability.'® Evidence shows
that PB can ameliorate ER stress and modulate the
unfolded protein response (UPR).!” In the SOD1 G934
mouse model of fALS, PB improves survival, motor
function, and histone acetylation and reduces motor
neuron loss, gliosis, ubiquitin-positive aggregates, and
apoptosis.'®
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TUDCA and PB are highly multifunctional molecules,
and the breadth of cellular processes targeted by these
two drugs could be beneficial in ALS. Their partially over-
lapping mechanisms of action suggest that in combina-
tion they may lead to synergistic activity. While each
molecule individually has been the subject of several stud-
ies, the molecular effects of the TUDCA-PB combination
have not been studied. In this work, we compared the
effects of TUDCA and PB (Combo) to those of each indi-
vidual drug in skin fibroblasts from sALS patients and
healthy controls using unbiased metabolomics and tran-
scriptomics.

sALS fibroblasts have been shown to manifest meta-
bolic and transcriptomic alterations'® > and display
altered age-related metabolic profiles and bioenergetic
states compared with control fibroblasts.***> Furthermore,
sALS fibroblasts show pathological changes similar to
those seen in disease-relevant cell types, including
increased susceptibility to DNA damage, TDP-43 cytosolic
mislocalization,”?’ and  oxidative  phosphorylation
impairment.”® Moreover, perivascular fibroblasts from
sALS patients exhibit transcriptomic alterations.”” This
evidence indicates that fibroblast can be a viable platform
to study the molecular effects of TUDCA-PB.

We found that Combo caused many more changes in
metabolism and gene expression than each individual
drug and the effects of Combo were largely distinct from
those of each drug alone. Combo-modified genes are
involved in mitochondrial function, UPR, intracellular
trafficking/nucleocytoplasmic transport, innate immune
function, nucleic acid metabolism, and RNA processing.
While some of the changes were shared between sALS
and CTL, others were differentially affected in sALS and
CTL, providing new insight into the mechanisms of
action of TUDCA and PB combination.

Materials and Methods

Cell culture and drug treatment

Twelve primary de-identified fibroblast lines from healthy
donors and 12 sALS patient lines were used in this study.
The 24 cell lines were randomized from a larger group
utilized by us in earlier studies'® >’ and were matched for
age at biopsy. Demographic and clinical data from all
subjects are shown in Table 1. Cells were cultured in Dul-
becco’s modified Eagle medium (DMEM) containing
5 mM glucose, 2 mM L-glutamine, 1 mmol/L sodium
pyruvate, 10% FBS, and 1% penicillin/streptomycin. For
all experiments, lines were assessed in passages 8-10.
Treatment was done with 10 pmol/L TUDCA and
100 umol/L PB for 5 days, replacing the medium with
drug-containing media daily. Doses are within the range
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Table 1. Demographic and clinical characteristics of de-identified
fibroblast lines used in this study.

Disease
duration at
Age the time of ALSFRS-R  Rate of
at skin biopsy  total at  ALSFRS-R

ID biopsy Sex (months) biopsy decline  FVC %

Control 1 55 F
2 59 M
3 69 M
4 54 M
5 65 F
6 61 F
7 79 M
8 53 F
9 58 M
10 65 M
1 62 F
12 51 M

SALS 1 64 M 14 35 0.93 79
2 77 M 8 30 2.25 83
3 67 F 14 35 0.93 78
4 64 M 24 38 0.42 55
5 4 F 9 30 2 90
6 54 F 10 22 2.6 39
7 64 F 15 28 1.33 22
8 60 F 10 41 0.7 115
9 64 M 15 27 1.4 45
10 64 F 8 36 1.5 86
11 68 F 12 24 2 98
12 65 M 11 28 1.82 47

Age at biopsy average 60.9 years for CTL and 62.6 years for sALS
(p > 0.6). Rate of ALSFRS-R decline % calculated as ([48 — ALSFRS at
Skin BX]/disease duration [months] at skin BX).

ALSFRS-R, ALS Functional Rating Score-Revised; sALS, sporadic; FVC,
forced vital capacity.

of observed plasma concentration of the drug in patients
according to unpublished data generated by Amylyx Phar-
maceuticals.

Statistical analyses of RNA sequencing and
metabolomics

RNA Sequencing and Metabolomics methods are described
in detail in Appendix S1, Supplementary Methods.

The R package DESeq2 version 1.24.0°° was used for
normalization and differential gene expression analysis,
with a low counts filter of <96 and all other filtering
parameters kept as defaults. A Wald test was used to
determine statistical significance, with the cutoff being a
false discovery rate of <5% after Benjamini-Hochberg
correction. Weighted gene co-expression network analysis
was done using the normalized gene expression data

Effects of PB-TURSO in Sporadic ALS Fibroblasts

from DESEq2 as an input for the functions included in
the WGCNA package available from CRAN.>' We opti-
mized parameters to maintain scale-free topology and to
allow for direct comparisons between the two networks,
Q-Q scaling was performed such that the 95% quantiles
of both matrices matched. For all networks, the module
merging parameter was kept consistent at 80%. Pairwise
Pearson’s correlations were used to calculate associations
between modules and disease traits. Pathway analysis for
all gene expression data was performed with the gprofil-
er2’®> and clusterProfiler packages,” using the gene
ontology (GO) Molecular Function (GO:MF), GO Bio-
logical Process (GO:BP), and Kyoto Encyclopedia of
Genes and Genomes (KEGG) databases. The cutoff for
significance was an FDR corrected p value of <0.05.
Pathways shown in the figures were condensed using the
simplify function from the clusterProfiler package® to
merge terms with more than 40% overlapping annotated
genes.

Relative metabolite abundance data were normalized
with a log transformation, and differential abundance
and pathway analyses were done with the free online
tool MetaboAnalyst 5.0.>* Metabolite significance was
determined with one-way ANOVA with post hoc ¢ tests,
with the cutoff being a raw p value of <0.05, and the
pathway significance cutoff was an FDR corrected p
value of <0.05. Multiomics analysis was done with the
mixOmics package.”” Data visualization was done in R
using the ggplot2, pheatmap, corrplot, and venndiagram
packages available from CRAN, and in GraphPad Prism
version 9.3 (GraphPad Software, Inc). Z scores were cal-
culated from normalized counts for each gene using the
standard formula (x — p)/o, where x is the sample
value, u is the population mean, and ¢ is the population
standard deviation.

Results

Combo has greater and distinct effects on
metabolism than either PB or TUDCA alone

For this study, we first examined the global effects of
TUDCA, PB, and Combo on primary human skin fibrob-
lasts, independent of the disease state (i.e., ALS or CTL).
We performed unbiased metabolomics on cell lines (12
sALS and 12 CTL per treatment group) maintained in
media containing physiological glucose levels (5 mmol/L)
and identified 167 targeted and 631 untargeted polar
metabolites (Table S1). Partial least squares-discriminant
analysis (PLS-DA) of the 798 metabolites showed that
samples treated with Combo were largely separable from
the other treatments (Fig. 1A). Differential metabolite
analysis identified 27 significantly different metabolites in
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Figure 1. Combo changes more metabolites than either phenylbutyrate (PB) or taurursodiol (TUDCA) alone. (A) Partial least squares-discriminant
analysis of normalized abundance data for all metabolites. (B) Bar graph showing the number of significantly different metabolites (p value <0.05)
for each treatment compared with vehicle. (C) Venn diagram of metabolites significantly changed by each treatment (p value <0.05). (D) Heatmap
of Z scores of all metabolites significantly changed by Combo. *Indicates targeted metabolites. (E and F) Small Molecule Pathway Database cate-
gory and pathway analysis of Combo-upregulated (E) and Combo-downregulated (F) metabolites.

Combo-treated samples versus vehicle (PBS)-treated sam-
ples, with only 10 and 8 significant metabolites with
TUDCA and PB, respectively (Fig. 1B, Table S2). The
majority (25/27) of significant metabolites in Combo were
unique to this treatment (Fig. 1C). Therefore, Combo has
distinct effects on metabolism that are not simply additive
effects of PB and TUDCA.

Both targeted and untargeted metabolites changed by
Combo are shown in Figure 1D. Combo-upregulated
metabolites included fatty acids, such as caproic and
heptanoic acid, and methyl-3-propanoate. We note that
identifiers assigned to the latter included PB derivatives,
suggesting that its increase is due to drug metabolism.
Downregulated metabolites included ubiquinone-1, pan-
tothenic acid, adenosine, s-adenosylmethionine, and
hypoxanthine. When Combo-upregulated metabolites
were grouped according to their Small Molecule Path-
way Database (SMPDB) class, the majority were amino
acids and fatty acids (Fig. 1E). Downregulated metabo-
lites were split across several SMPDB classes, and
approximately, half the significantly enriched pathways
(12/22) were related to amino acid metabolism
(Fig. 1F).

1554

Combo has greater and distinct effects on
gene expression than either PB or TUDCA
alone

Next, we performed unbiased 3’ RNA sequencing on total
fibroblast RNA. We found that the major contributor to
overall variability in gene expression was interline vari-
ability. Principal component analysis of the top 500 most
variable genes showed that the factor driving clustering
was the individual line identifier (Fig. 2A). However,
PLS-DA of the same genes showed that while PB and
TUDCA samples overlapped with PBS-treated samples,
Combo samples could be separated (Fig. 2B). Therefore,
similar to metabolomics, when samples were analyzed
independent of disease state, Combo induced greater
changes in overall gene expression than PB or TUDCA
alone. Fewer differentially expressed genes (DEGs) (adj. p
value <0.05) were found in the TUDCA versus PBS com-
parison (16 DEGs, Fig. 2C) and PB versus PBS (186
DEGs, Fig. 2D) compared with Combo versus PBS (1838
DEGs, Fig. 2E, Table S3). Similar to metabolites, the vast
majority (1796/1838) of DEGs in the Combo versus PBS
were unique (Fig. 2F).
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Figure 2. Combo changes more genes than either phenylbutyrate (PB) or taurursodiol (TUDCA) alone. (A) Principal component analysis of the
top 500 genes with the highest variability. (B) Principal least squares-discriminant analysis of the top 500 genes with the highest variability. (C—E)
Volcano plots of differentially expressed genes (DEGs) of TUDCA (C), PB (D), and Combo (E) relative to the vehicle. (F) Venn diagram of DEGs in
each treatment. (G) Category analysis of all significant gene ontology (GO) terms enriched in Combo upregulated DEGs. (H) Top 20 most signifi-
cant GO:BP terms enriched in Combo-upregulated DEGs, simplified with the clusterProfiler package. (I) Category analysis of all significant GO
terms enriched in Combo downregulated DEGs. (J) Top 20 most significant GO:BP terms enriched in Combo downregulated DEGs.

GO analysis showed that among 233 pathways upregu-
lated by Combo (Table S4), some of the most significant
ones were related to intracellular transport, including
nuclear transport (Fig. 2G and H). Several genes of the
importin (TNPO3, IPOS5, and IPO7) and nuclear pore
complex (TPR, NUP188, NUP153, NUP54, and POM121)
were changed by Combo (Fig. S1A). Other major cate-
gories upregulated by Combo included bioenergetic path-
ways, such as oxidative phosphorylation (Fig. 2G).
Accordingly, genes encoding mitochondrial oxidative
phosphorylation complexes were upregulated by Combo
(Fig. S1B). Furthermore, another group of upregulated
pathways was related to the UPR, including ER stress
(Fig. 2G). Upregulated UPR genes included WFSI and
CREB3, both of which promote cell survival under ER
stress.>®*” Of note, Combo is being studied for the treat-
ment of Wolfram Syndrome with mutations in WFS1.%®
VCP, which recruits ubiquitinated proteins to the protea-
some and causes fALS when mutated,” was also upregu-
lated by Combo (Fig. S1C). Interestingly, we found
upregulation of several genes associated with innate
immune activation, in particular genes encoding subunits

of the 20S and 26S immunoproteasome (Fig. S1D), which
degrades antigens presented by MHC-I, but may also par-
ticipate in clearing misfolded proteins.*” Furthermore,
STING1 was upregulated and cGAS downregulated by
Combo (Fig. S1D). Overall, these findings show Combo
upregulation of pathways associated with TUDCA and
PB,'®'"” such as mitochondrial function and ER stress,
but also highlight novel pathways.

One of the largest categories of pathways downregu-
lated by Combo of potential interest for ALS was RNA
metabolism and processing®' (Fig. 2J and I and Table S4).
Enriched terms encompassed processing of mRNA, rRNA,
ncRNA, and miRNA and included polyadenylation, cap-
ping, and methylation activities. Other downregulated
pathways were related to protein modifications, including
acetylation, methylation, and polyubiquitination, as well
as chromatin remodeling (Fig. 2I). Specific histone modi-
fication genes in downregulated pathways, encode for
enzymes that perform H2B ubiquitination and H3 methy-
lation at K36 and K4, marks associated with actively tran-
scribed chromatin.*? Transcription-associated pathways
were also downregulated, and genes identified in these
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pathways included members of the mediator transcrip-
tional coactivator complex, components of the regulatory
machinery of RNA Pol II transcription. Taken together,
GO analyses reveal a global downregulation of genes
involved in transcription and RNA metabolism and pro-
cessing.

To better understand the transcriptional regulation
underlying Combo-driven gene expression changes, we
performed transcription factor (TF) binding site enrich-
ment analysis on DEGs. The largest groups of TF-binding
sites enriched in both up- and downregulated genes
belonged to Elkl, E2F1, and Elfl, while Spl and Egrl
were selectively enriched in upregulated genes, and YY1
and CREBI in downregulated genes (Table S5). Elkl,
E2F1, and Egrl regulate cell cycle and apoptosis.*>™** Sp1
controls a broad range of cellular functions, including cell
survival, immune responses, DNA damage responses, and
chromatin remodeling.* EIfl regulates the immune
response,”” and YY1 modulates DNA damage repair.*®
The functions of these transcription factors align with the
GO pathways identified in Combo-regulated genes
(Fig. 2), suggesting that these transcription factors are
effectors of Combo treatment.

Multiomics analysis identifies a set of
metabolites and genes that discriminate
Combo from vehicle treatment

Next, we combined metabolomic and transcriptomic data
sets for multiomics analysis to identify features able to
distinguish Combo from the other treatments. We used
the DIABLO (Data Integration Analysis for Biomarker
discovery using Latent variable approaches for Omics
studies) algorithm found by PLS-DA that Combo-treated
cells (sALS and CTL combined) could be partially sepa-
rated from all other treatments on Variate 1, which uti-
lized the most discriminatory 5 metabolites and 20 genes
(Fig. 3A). Receiver-operating characteristic (ROC) curves
showed that a model that uses these metabolites and
genes discriminates Combo samples better than any other
classification (Fig. 3B), confirming that Combo had more
distinct effects than either drug individually. To further
examine the genes and metabolites driving the classifica-
tion of Combo from other groups, we performed the
analysis using only Combo and PBS samples. PLS-DA
identified the most discriminatory 5 metabolites and 20
genes and showed that Combo could be fully separated
from PBS on Variate 1 (Fig. 3C). Hierarchical clustering
confirmed the full separation of Combo from PBS based
on Variate 1 metabolites and genes (Fig. 3D). Several of
the 20 genes encoded RNA-binding proteins involved in
RNA polymerase II transcription, which were decreased
by Combo. The metabolites that most strongly

J. A. Fels et al.

discriminated Combo from PBS included methyl-3-
propanoate/3-phenylbutyric acid, ubiquinone-1, and I
hydroiodic acid. Taken together, this multiomics
approach confirmed that Combo has unique effects on
gene expression and metabolism, strongly driven by a
subset of genes and metabolites identified with both
methods of analysis.

Combo has greater and distinct effects on
gene expression in sALS compared with CTL
fibroblasts

Next, we tested if the effects of Combo were different in
sALS and CTL fibroblasts. All metabolites significantly
changed by Combo in sALS were also changed in CTL
(Fig. S2). On the other hand, there were double the num-
ber of DEGs in sALS relative to CTL (522 vs. 223)
(Fig. 4A and B, Tables S6 and S7). Half of the upregu-
lated DEGs in the CTL Combo versus PBS comparison
overlapped with those identified in sALS (33/66) and
~66% of the downregulated DEGs also overlapped (96/
157). The majority of DEGs in the sALS Combo versus
PBS comparison were unique to this group (Fig. 4C). The
same pattern was evident for significantly enriched path-
ways (Fig. 4D). Only four pathways were enriched in
upregulated DEGs in CTL Combo versus PBS, all related
to RNA splicing (Fig. 4E, Table S8), while there were 67
enriched pathways in the sALS Combo versus PBS com-
parison (Table S9). Major categories of pathways upregu-
lated by Combo in sALS included intracellular transport,
cytoskeleton organization, and autophagy (Fig. 4F-G).
Within the intracellular transport category, many of the
DEGs identified in the combined (sALS and CTL) analy-
sis (Table S5) overlapped with those found specifically in
sALS (Table S9). Uniquely upregulated genes in sALS
included regulators of autophagosome formation and ER
stress response.

The largest category of terms uniquely downregulated
by Combo in CTL was RNA processing (Tables S8 and
S9), including terms associated with RNA binding, splic-
ing, and polyadenylation (Fig. 4H and I). Unique to
sALS, the largest category of downregulated terms was
metabolic processes, mainly related to nucleic acid meta-
bolism (Fig. 4] and K). Furthermore, more genes and
terms related to RNA polymerase II transcription were
downregulated by Combo in sALS compared with CTL,
including SETX, a helicase that modulates RNA poly-
merase II binding to chromatin, known to be associated
with juvenile ALS.*’

Taken together, GO results reveal that many of the
transcriptional effects of Combo are unique to sALS. In
particular, intracellular transport and RNA polymerase II
transcription genes were modulated only in sALS.

1556 © 2022 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.
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Figure 3. A set of 20 genes and 5 metabolites can discriminate Combo samples from the vehicle. (A) Principal least squares-discriminant analysis
of multiomics comparison normalized RNA and metabolites for all treatments, based on the top 20 most discriminatory genes and top 5 most dis-
criminatory metabolites. (B) Receiver-operating characteristic curves for the discrimination of each treatment from all other treatments based on
the same 20 genes and 5 metabolites as in (A). (C) Principal least squares-discriminant analysis of multiomics comparison normalized RNA and
metabolites for Combo versus PBS based on the top 20 most discriminatory genes or top 5 most discriminatory metabolites. (D) Bar graphs of the
top 20 genes and top 5 metabolites for Combo versus PBS. (E) Hierarchical clustering of samples based on the values of the 20 genes and 5

metabolites as in (C and D).

WGCNA identifies associations between
modules and disease traits that are
modified by Combo

Weighted gene co-expression network analysis (WGCNA)
can complement differential gene expression analysis
methods. WGCNA considers highly similar groups of
genes based on expression patterns across samples as sets
of interconnected modules,”””° thereby creating a net-
work of gene expression patterns that can be correlated to
disease traits. This approach increases statistical power for
identifying associations between traits and gene expression
profiles. WGCNA has recently been applied to discover
transcriptomic alterations in ALS spinal cord.”!

We used normalized gene expression data from 16,492
genes that passed quality control filters as input to con-
struct two co-expression networks, one from all 24
Combo samples, and the other from all 24 vehicle (PBS)-
treated samples (Fig. 5A and B). After hierarchical clus-
tering to identify groups of highly co-expressed genes
(modules), we found 49 modules in the Combo network

and 40 modules in the vehicle network (Fig. 5C and D).
We then correlated module gene expression with disease
traits, including disease state (sALS vs. CTL), disease
duration (time between symptom onset and skin biopsy),
ALS Functional Rating Score-Revised (ALSFRS-R) score,
rate of decline in ALSFRS-R, and forced vital capacity
(FVC)%. We also included age and sex as potential bio-
logically relevant variables. In PBS samples, sex was not a
major driver of variance in overall gene expression, while
age significantly correlated with PC1 (Fig. S3). In Combo
samples, sex and age did not correlate with any of the top
three PCs (Fig. S3). Therefore, variance in gene expres-
sion associated with age that exists in vehicle-treated cells
was attenuated by Combo treatment.

We identified 22/40 modules that were significantly
(Pagj <0.01) associated with one or more traits in the
vehicle network and 23/49 modules in the Combo net-
work (Fig. 5C and D). Of the 22 trait-associated modules
from the vehicle network, 15 had at least one significant
GO enrichment (Table 2). Of the 23 from the Combo
network, 18 had at least one significant enrichment
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Figure 4. Combo has different transcriptional effects in sALS and CTL cells. (A and B) Volcano plots of differentially expressed genes (DEGS) in
the Combo versus PBS comparison in CTL (A) and sALS (B) lines. (C and D) Venn diagram comparing DEGs (C) and gene ontology (GO) terms (D)
changed by Combo in sALS and CTL lines. (E) Top 4 most significant GO:BP terms enriched in Combo-upregulated DEGs in CTL. (F) Top 20 most
significant GO:BP terms enriched in Combo-upregulated DEGs in ALS. (G) Category analysis of all significant GO terms enriched in Combo-
upregulated DEGs in ALS. (H) Top 20 most significant GO:BP terms enriched in Combo downregulated DEGs in CTL. (I) Category analysis of all
significant GO terms enriched in Combo downregulated DEGs in CTL. (J) Top 20 most significant GO:BP terms enriched in Combo downregulated
DEGs in ALS. (K) Category analysis of all significant GO terms enriched in Combo downregulated DEGs in ALS.

(Table 3). To identify functional differences in disease
trait-associated modules in response to Combo, we com-
pared the GO results from modules in each network. A
larger portion of the vehicle trait-associated modules, par-
ticularly Grey60, Salmon, and Violet, had enrichment for
terms related to developmental processes and cell cycle
(Fig. S4, Table S10). These pathways were not detected in
Combo modules. Furthermore, several terms related to
cell death caused by oxidative stress were identified in the
Paleturquoise and Violet modules and were not found in
Combo modules (Fig. S4, Table S10). Major enriched
pathways emerging from Combo were immune activation
(Turquoise and Darkturquoise modules) and translation,
both cytoplasmic and mitochondrial (Pluml and Blue
modules, Fig. S4, Table S10). Within each disease trait,
the majority of GO terms enriched in all associated mod-
ules were not shared between vehicle and Combo
(Fig. S5). Therefore, the functional associations of sets of
genes correlated with disease traits were modified by
Combo.

To further investigate changes in the module—trait asso-
ciations caused by Combo, we compared modules from

each network based on their components with Fisher’s
exact test, considering two or more modules as a matched
pair if the adjusted p value <0.05 (Fig. S6). Thirty-one of
40 vehicle modules had a match in the Combo network.
Notably, the Black module was associated with ALSFRS-
R, rate of decline, and FVC% in the vehicle network and
was paired with the Darkred and Royalblue modules in
the Combo network, but neither had significant associa-
tions with any disease traits. This pairing of modules
from the two networks was the most interesting because
it was the only one in which associations were lost due to
the Combo treatment. GO analysis of the 758 genes that
make up the Black module revealed strong enrichment of
RNA processing and metabolism pathways across multiple
classes of RNAs (Fig. 5E). Another major group of path-
ways enriched in genes from the vehicle Black module
was intracellular localization/transport (Fig. 5F). Individ-
ual Black module genes that had strong correlations with
disease traits included SELENOQO, a mitochondrial redox-
sensitive selenoprotein,52 LONPI, a mitochondrial pro-
tease that degrades damaged proteins,” UGGTI, which
recognizes unfolded glycoproteins in the ER,”* ORAII, an
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Figure 5. WGCNA identifies modules of genes associated with ALS clinical traits that are altered by Combo. (A and B) Dendrograms of
hierarchical clustering of gene co-expression modules for vehicle-treated samples (A) and Combo samples (B). (C and D) Heatmaps showing correla-
tions between module eigengene expression values and clinical traits (individual is a cell line identifier, disease reduced is a disease state, age is the
age at biopsy, disease duration is the time between symptom onset and biopsy, ALSFRS.R is the score at the time of biopsy, rate_decline is the
decrease in ALSFRS-R/disease duration, FVC is %FVC at time of biopsy) for vehicle-treated samples (C) and Combo samples (D). The individual cell
line identifier was included as a negative control. The numbers in each box are p values, and box colors correspond to the correlation coefficient.
(E) Top 20 most significant GO (gene ontology):BP terms enriched in the vehicle Black module. (F) Category analysis of all significant GO terms
enriched in the vehicle Black module. (G) Venn diagram of overlap between significantly enriched GO pathways found in the vehicle Black module
and the Combo modules (Darkred and Royalblue) paired with Black. (H) Correlations between the expression of the 758 Black module genes in
vehicle and Combo samples and disease traits. Size correlates inversely to p value, and the color corresponds to Pearson’s correlation coefficient.

Table 2. Modules in the vehicle network with a significant trait asso-

ciation and GO annotation.

Disease Rate of
Disease duration ALSFRS-R decline FvC

Darkred Black Black Black

Violet Salmon4  Salmon4 Violet

Red Turquoise  Turquoise Salmon

Saddle brown Red Grey60
Saddle brown  Darkolivegreen
Floral white Gray
Brown Pale turquoise
Pink

ALSFRS-R, ALS Functional Rating Score-Revised; FVC, forced vital

capacity; GO, gene ontology.

essential component of ER store-operated calcium entry,”
and TRAM?2 and TMEM]147, members of the ER translo-
con complex®® (Table S11). Finally, the most commonly

© 2022 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.

identified transcription factors with binding sites enriched
in genes from the Black module were Elkl, E2F1, Elfl,
Spl, and Ergl (Table S12), the same transcription factors
identified in the differential expression analysis. These
results support and extend those obtained through differ-
ential expression analysis (Figs. 2 and 4), and point to
RNA processing/metabolism, intracellular transport, and
ER and mitochondrial homeostasis as pathways modified
by Combo.

Last, as the Combo Darkred and Royalblue modules
paired with the vehicle Black module (with 40/164 and
129/642 genes in common with Black, respectively,
Fig. S6), but did not associate with disease traits, we
tested whether the loss of the association was due to dif-
ferences in the set of nonoverlapping genes from each
module. We concluded that this was unlikely, as 92 of the
141 enriched pathways in the Black module were also
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Table 3. Modules in the vehicle network with a significant trait asso-
ciation and GO annotation.

Disease Rate of
Disease duration ALSFRS-R decline FvC
Thistle1 Thistle1 Dark Thistle1 Lightsteelblue1
turquoise
Lightsteelblue1 Pale Darkmagenta Yellowgreen
turquoise
Yellowgreen Blue Yellow Lightcyan1
Lightcyan1 Lightcyan Red
Red Turquoise Skyblue
Skyblue Orange Maroon
Turquoise Pale Blue
turquoise
Orange
Plum1
Darkorange2
Darkgray

ALSFRS-R, ALS Functional Rating Score-Revised; FVC, forced vital
capacity; GO, gene ontology.

found in the Darkred and Royalblue modules (Fig. 5G),
suggesting that there were no major functional differ-
ences. Furthermore, as the overlap between the genes in
the Black module and those in Darkred and Royalblue
was not complete (589/758 Black module genes not found
in either Darkred or Royalblue, Fig. S6), we took all 758
Black module genes and calculated correlations between
their average expression in Combo samples and the dis-
ease traits. This approach confirmed that the strong cor-
relation of this set of genes with disease traits in the
vehicle was significantly reduced by Combo (Fig. 5H).
Taken together, these results identify a set of highly co-
expressed genes, that strongly correlate with several mea-
sures of ALS disease severity, and are modified by Combo
such that after treatment their expression no longer corre-
lates with the disease traits.

Discussion

ALS is a rapidly progressive, fatal disease, but despite a clear
need for better treatment strategies, clinical trial outcomes
in ALS have been largely unsuccessful. Factors potentially
driving the failure of investigational treatments include
delayed diagnosis due to heterogeneity of disease presenta-
tion, a lack of disease biomarkers, and the disconnect
between disease etiology in animal models of fALS and
human sALS cases. The search for new treatments contin-
ues despite these hurdles and preclinical and clinical evi-
dence point to TUDCA and PB as potential therapies for
ALS. TUDCA” and PB*® were tested individually in Phase
2 clinical trials showing modest improvements. However,

J. A. Fels et al.

in the Phase 2 CENTAUR trial, the TURSO-PB combina-
tion (AMXO0035) significantly slowed ALSFRS-R decline*
and extended survival in the open-label extension trials.’
TURSO-PB is currently under clinical investigation in the
multicenter Phase 3 (PHOENIX) trial. While the clinical
investigation of this drug combination is advancing, the
molecular effects of the Combo in human cells have not yet
been characterized.

In this study, we elucidate the transcriptomic and
metabolic effects of the TUDCA-PB combination using
unbiased approaches in primary skin fibroblasts from
sALS patients and healthy controls. We compared the
effects of Combo to each individual drug. Remarkably,
Combo changed many more metabolites and genes than
either TUDCA or PB alone, and most changes were
unique to  Combo. Among  metabolites, S-
adenosylmethionine downregulation is of particular inter-
est because of its involvement in glutathione biosynthesis
and its impact on epigenetics due to its role as a methyl
donor for histone and DNA methyltransferases.”® Numer-
ous studies have linked changes in DNA methylation and
histone posttranslational modifications to ALS,”” includ-
ing in a large collection of induced pluripotent stem cell-
derived motor neurons.”’ Furthermore, altered DNA
methylation patterns were recently described in a large-
scale study of blood samples from ALS patients.®* Future
studies investigating the epigenetic effects of TURSO-PB
will expand upon these findings.

Overall, many genes and GO pathways that have been
investigated in ALS were altered by Combo, for example,
several nucleocytoplasmic transport (NCT) pathways.
NCT is affected in ALS,°>** as several models of ALS
showed abnormal nuclear membrane shape, nuclear pore
complex protein loss or mislocalization, and dysregulated
NCT dynamics.®” NCT pathways were both up- and
downregulated by Combo, although the majority of sig-
nificantly changed nucleoporin genes were downregulated.
Interestingly, the transcriptional changes produced by
Combo in NCT pathways were more pronounced in sALS
than CTL lines, but the functional implications of these
changes for ALS remain to be investigated.

Consistent with the known effects of TUDCA and PB
against ER stress, we observed upregulation by Combo of
genes promoting survival in ER stress conditions and
downregulation of mediators of UPR signaling. Combo
also increased the expression of several subunits of the
mitochondrial respiratory chain and innate immune path-
ways involving cGAS/STING signaling. Moreover, sub-
units of the immunoproteasome were upregulated by
Combo. Instead, several genes connected to RNA pol II
transcription were strongly downregulated by Combo.

Other combination therapies, beyond TURAO-PB, are
currently under clinical investigation for ALS. Notably,
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the combination of nicotinamide riboside and pterostil-
bene (EH301), which are proposed to be activators of sir-
tuin 1, is presently in phase III clinical trial (NO-ALS).
We recently investigated the metabolic and transcriptional
effects of EH301 in sALS and CTL fibroblast lines,”® so
these effects can be compared with those of Combo. Most
notable pathways uniquely regulated by EH301 and not
by Combo included the cell cycle and protein translation,
while the main pathways in common between the two
treatments were related to mitochondrial function, ER
stress response, DNA damage repair, and innate immu-
nity. Pathways regulated by Combo but not by EH301
included NCT and other intracellular transport functions
and RNA polymerase II-dependent transcription. The
pathways affected by both combinations could highlight
shared therapeutic targets, while the distinct ones could
be potential targets for personalized therapy.

WGCNA was used to correlate changes in gene expres-
sion patterns driven by Combo with ALS clinical parame-
ters. In sALS fibroblasts, we found associations between
innate immune pathways and ALSFRS-R and FVC% in
both the vehicle and Combo networks. The Black module
was strongly correlated with disease duration, ALSFRS-R,
and FVC% in the vehicle network and significantly
enriched for several immune-related GO terms. Interest-
ingly, WGCNA using data from postmortem ALS spinal
cord samples showed a strong correlation between expres-
sion of mitochondrial oxidative phosphorylation and
immune activation genes and disease.”’ Importantly, in
our fibroblast Combo network, the Darkred and Royal-
blue modules, which significantly matched as a pair with
the Black module in the vehicle network, lost all associa-
tions with disease traits. The loss of these associations
suggests that Combo affects the expression of
inflammation-related genes, which are strongly correlated
with measures of disease severity. The similarities between
the findings in fibroblast and spinal cord suggest that
sALS fibroblasts share common transcriptomic alterations
with affected tissues from ALS patients and could provide
clues to understanding the therapeutic mechanisms of
action of Combo in ALS.

Several questions remain to be answered in future
work. This study was done in primary fibroblasts from
SALS patients, as these cells are accessible and easily
manipulated to study drug effects. The extent to which
the findings from fibroblasts are recapitulated in motor
neurons, the primary cell type affected in ALS will need
to be investigated. Furthermore, we studied drug effects
at a single time point. As treatment in patients will extend
into months or years, the longitudinal effects of Combo
should be a focus of future research. Finally, the method-
ology used in this study lends itself to an exploration of
genes and metabolites that correlate with or predict a

Effects of PB-TURSO in Sporadic ALS Fibroblasts

therapeutic response to Combo treatment, but this infor-
mation is not yet available. As clinical trials progress and
biological samples and patient response data become
available, it will be possible to examine the relationship
between gene expression and metabolism in patient-
derived samples and clinical effects.

In summary, this study is the first to report the tran-
scriptomic and metabolomic effects of TURSO-PB combo
in cells from healthy controls and sALS patients. We
found that Combo alters the expression of genes involved
in pathways linked to neurodegeneration, including mito-
chondrial function, UPR, nucleocytoplasmic transport,
and immune activation. We propose that the modulation
of these pathways could underlie the neuroprotective
effects of TURSO-PB in ALS.
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Table S1 Full metabolite identifiers and masses.

Table S2. Significant differential metabolite abundance
results for all treatments compared with PBS.

Table S3. Differential expression results for all treatments
compared with PBS.

Table S4. Gene ontology enrichment results for Combo
compared with PBS.

Table S5. Transcription factor enrichment results for
Combo compared with PBS.

Table S6. Differential expression results for Combo com-
pared with PBS in CTL lines.

Table S7. Differential expression results for Combo com-
pared with PBS in sALS lines.

Table S8. Gene ontology enrichment results for Combo
compared with PBS in CTL lines.

Table S9. Gene ontology enrichment results for Combo
compared with PBS in sALS lines.

Table S10. Gene ontology enrichment results for trait-as-
sociated modules in vehicle and Combo networks.

Table S11. Vehicle Black module genes and correlations
with ALSFRS-R.

Table S12. Transcription factor enrichment results for the
vehicle Black module.

Figure S1 Alterations by Combo treatment in the expres-
sion of genes in ALS-relevant pathways. (A-D) Heatmaps
of Z scores of differentially expressed genes changed by

J. A. Fels et al.

Combo in the nucleocytoplasmic transport (A), oxidative
phosphorylation (B), unfolded protein response (C), and
innate immune activation pathways (D).

Figure S2 Combo does not have different metabolic
effects in sALS and CTL cells. (A) Bar graph showing
number of significantly different metabolites changed by
Combo in ALS and CTL lines (p value <0.05). (B) Venn
diagram of metabolites significantly changed by Combo
in ALS and CTL.

Figure S3 Correlation between gene expression principal
components and clinical traits in vehicle- and Combo-
treated cells. (A and B) Plots showing correlation coeffi-
cients between clinical traits and the first 10 principal
components derived from gene expression for the vehicle
(A) and Combo (B) networks. Size corresponds inversely
to p value, with X’s denoting correlations that are not sta-
tistically significant (adjusted p value >0.05), and color
corresponds to Pearson’s correlation coefficient.

Figure S4 Gene ontology (GO) pathways associated with
clinical traits in vehicle and Combo networks. (A and B)
Category analysis of all significant GO terms enriched in
all significantly trait-associated modules in the vehicle (A)
and Combo (B) networks.

Figure S5 Gene ontology terms associated with ALS dis-
ease traits change after Combo treatment. (A-D) Venn
diagrams showing the overlap between all modules signifi-
cantly associated with clinical traits from the vehicle and
Combo networks, for disease duration (A), ALSFRS-R
(B), rate of decline (C), and forced vital capacity % (D).
Figure S6 Matching of modules in the vehicle and
Combo networks. The table shows the correspondence
between modules identified in the vehicle (vertical axis)
and Combo (horizontal axis) networks. p values are cal-
culated using Fisher’s exact test, color corresponds to
—log,o(p value). The numbers in each box are the num-
ber of overlapping genes found in a pair of modules. The
black box identifies the vehicle Black module and its
Combo paired modules Darkred and Royalblue.
Appendix S1 Supplementary Materials.
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