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stem cells into rejuvenated CD8αβ+ T cells targeting
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KEY PO INT S

•A preclinical framework
to epigenetically
reprogram BCMA-
specific CD8αβ+

memory T cells using
iPSC technology to
target MM.

• BCMA-specific iPSC–
derived hematopoietic
progenitor cells having
specific regulatory
elements that control
CD8+ T-cell lineage
commitment.
d-202
A major hurdle in adoptive T-cell therapy is cell exhaustion and failure to maintain anti-
tumor responses. Here, we introduce an induced pluripotent stem cell (iPSC) strategy for
reprogramming and revitalizing precursor exhausted B-cell maturation antigen (BCMA)-
specific T cells to effectively target multiple myeloma (MM). Heteroclitic BCMA72-80

(YLMFLLRKI)–specific CD8+ memory cytotoxic T lymphocytes (CTL) were epigenetically
reprogrammed to a pluripotent state, developed into hematopoietic progenitor cells
(CD34+ CD43+/CD14− CD235a−), differentiated into the T-cell lineage and evaluated for
their polyfunctional activities against MM. The final T-cell products demonstrated (1)
mature CD8αβ+ memory phenotype, (2) high expression of activation or costimulatory
molecules (CD38, CD28, and 41BB), (3) no expression of immune checkpoint and senes-
cence markers (CTLA4, PD1, LAG3, and TIM3; CD57), and (4) robust proliferation and
polyfunctional immune responses to MM. The BCMA-specific iPSC–T cells possessed a
single T-cell receptor clonotype with cognate BCMA peptide recognition and specificity
for targeting MM. RNA sequencing analyses revealed distinct genome-wide shifts and a
distinctive transcriptional profile in selected iPSC clones, which can develop CD8αβ+
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memory T cells. This includes a repertoire of gene regulators promoting T-cell lineage development, memory CTL
activation, and immune response regulation (LCK, IL7R, 4-1BB, TRAIL, GZMB, FOXF1, and ITGA1). This study high-
lights the potential application of iPSC technology to an adaptive T-cell therapy protocol and identifies specific
transcriptional patterns that could serve as a biomarker for selection of suitable iPSC clones for the successful
development of antigen-specific CD8αβ+ memory T cells to improve the outcome in patients with MM.
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Introduction
Effective cancer immunotherapy strategies aim to boost effector
T-cell development and function while abrogating mechanisms
mediating immunosuppression in the tumor microenvironment.
Adoptive T-cell therapy using ex vivo expanded cytotoxic
T lymphocytes (CTL) against tumor-associated antigens provides
an important immune defense against cancer and has achieved
durable remissions in selected malignancies.1,2 Although there
are clear benefits of using chimeric antigen receptor T-cell (CAR-
T) or adoptive T-cell therapy, progress in the field has been
impeded by exhaustion and senescence of these tumor targeting
effector cells, which limits proliferation and functional activities
against tumor cells.3-9 Among proposed methodologies to revi-
talize T cells, epigenetic reprogramming into induced pluripotent
stem cell (iPSC), followed by T-cell lineage redifferentiation has
shown encouraging results.10-13 However, there remains several
unaddressed challenges before clinical application, including
elimination of animal-derived feeder cells and identification of the
iPSC clones that successfully differentiate into functional mature
CD8αβ+ T cells.14-16 By overcoming these challenges, T cells
differentiated from iPSC (iPSC–T cells) can provide functionally
rejuvenated antigen-specific T cells that can be expanded ex vivo
without repeated antigen stimulation, which is a driver of
exhaustion and immune functional dysregulation.

Here, we have presented solutions to these challenges and
used multiple myeloma (MM) as our model by targeting B-cell
maturation antigen (BCMA), which is selectively expressed on a
subset of mature B cells and long-lived plasma cells and has a
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favorable therapeutic index in MM.17-20 Parental BCMA-specific
CTL, generated by repeated stimulation with our novel immu-
nogenic heteroclitic BCMA72-80 (YLMFLLRKI) peptide,9 resulted
in antigen-specific memory CTL with a precursor exhaustion
phenotype (CD45RO+ CD83+) and polyfunctional anti-MM
activities. To overcome this limitation, we applied iPSC tech-
nology to revitalize BCMA-specific CTL with a goal to enhance
their functional activities against MM. The iPSC process begins
with isolation of interferon gamma (IFN-γ) producing BCMA-
specific memory CTL, epigenetically reprograming them into
BCMA-specific iPSC, establishing hematopoietic progenitor
cells (HPCs) from embryoid bodies and finally redifferentiating
them into fully functional BCMA-specific CD8αβ+ memory T
cells. The revitalized iPSC–T cells displayed a memory pheno-
type lacking expression of immune inhibitory and senescence
markers (CTLA4, PD1, LAG3, and TIM3; CD57), which were
abundantly expressed on the parental memory BCMA72-80

(YLMFLLRKI) peptide–specific CD8+ CTL (BCMA-CTL). In addi-
tion, our RNA sequencing (RNA-seq) analyses identified specific
transcriptional profiles that could be useful to select specific
iPSC clones that successfully differentiate into CD8αβ+ memory
T cells. The improved iPSC process was further refined and
shortened to allow for potential clinical application.

These results highlight the potential benefit of epigenetic
reprogramming of precursor exhausted BCMA-specific CD8+ CTL
that express immune checkpoints into iPSC, which provide a
renewable source of pluripotent progenitor cells into rejuvenated,
antigen-specific memory CTL under optimized feeder-free con-
ditions. Furthermore, RNA-seq analyses identified unique whole-
genome profiles and delineated specific T-cell pathways used by
iPSC-derived HPCs for T-cell development. Early transcriptome
identification of T-cell regulatory pathways will allow for the
selection of appropriate iPSC clones in future studies for the
optimal direction of cell differentiation and improve the overall
process and production of exhaustion-free, antigen-specific T
cells for therapeutic application. Together, these studies provide
insights into improving the translation of iPSC technology into the
clinic for treatment of MM or potentially other cancers.
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Materials and Methods
Cells
Tumor cell lines, cells from patients with MM, cells from healthy
donors, and various types of antigen-presenting cells were
cultured at 37◦C, 5% CO2. Detailed information is described in
supplemental Methods, available on the Blood website.

Reagents
Detailed information on reagents including antibodies, cyto-
kines, peptides, and tetramers is described in supplemental
Methods.
Establishment of BCMA-specific iPSC
Heteroclitic BCMA-CTL were generated ex vivo by repeated
peptide stimulation of T cells from HLA-A2+ donors as
described previously.9 Upon MM stimulation, IFN-γ–producing
BCMA-specific memory CTL were sorted using fluorescence-
activated cell sorter (FACS) and used for iPSC establishment.
The details are presented in supplemental Methods.
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Development of BCMA-specific iPSC and
evaluation of their pluripotency status, germ
differentiation, karyotype, and Sendai virus
residue
BCMA-specific iPSC (BCMA-iPSC) colonies were established,
evaluated for specific phenotypes by FACS, pluripotency, and
Giemsa banding patterns and karyotype and investigated on
Sendai virus residue. The details are presented in supplemental
Methods.

Formation of BCMA-specific embryoid body and
differentiation of HPCs into antigen-specific T
lymphocytes
Detailed procedures on embryoid body (EB) formation from
BCMA-specific iPSC, isolation of BCMA-specific HPCs and dif-
ferentiation into BCMA-specific iPSC-T lymphocytes are
described in the supplemental Methods.

Characterization of iPSC-derived HPCs, BCMA
iPSC–T cells, and apoptotic pathways in MM cell
lines
iPSC-HPCs and iPSC-T cells were analyzed for their specific
phenotype, proliferation, cytotoxic activities, CD107a degran-
ulation, and T helper 1 (Th1) cytokine production, as appro-
priate. MM cells were analyzed for their proliferative- or
apoptotic-related cascades upon exposure to BCMA iPSC–T
cells. Details are presented in supplemental Methods.

Single-cell sequencing of TCR on BCMA-iPSC–T
cells
T-cell receptor (TCR) sequence analyses were performed on
single cells isolated from BCMA-iPSC–T cells using the RNase H-
dependent PCR-enabled T-cell receptor sequencing (rhTCRseq)
protocol.21 Details are described in the supplemental Methods.

Whole transcriptome profiling and GO enrichment
analyses
FAC-sorted iPSC-derived HPCs were evaluated by RNA-seq
analyses. For library preparation, SMART-Seq V4 ultralow input
RNA-Seq kit (Takara Bio) was used to synthesize complementary
DNA (cDNA). This involved priming the RNA’s 3′ end with the
coding sequence (CDS) primer, synthesizing the first strand of
DNA by reverse transcription (RT), and employing the SMARTseq
oligos for template switching, thus creating the second strand by
RT before amplification by polymerase chain reaction. To make
Illumina libraries, we sheared the cDNA to 150 bp using the
Covaris M220 sonicator and then used the SMARTer Thruplex
DNA-Seq kit (Takara Bio) to ligate the Illumina adapters and
barcodes to the cDNA fragments. The libraries were sequenced
with paired-end 50 bp reads targeting 30 million read pairs per
sample on an Illumina NovaSeq 6000 platform. Sequenced reads
were aligned to the UCSC hg19 reference genome assembly,
and gene counts were quantified using STAR (version 2.5.1b).22

Differential gene expression testing was performed using
DESeq2 (version 1.10.1)23 and normalized read counts (frag-
ments mapped per kilobase per million [FPKM]) were calculated
using cufflinks (version 2.2.1).24 RNA-seq analysis was performed
using the VIPER snakemake pipeline.25 The database for anno-
tation, visualization, and integrated discovery (DAVID 6.8
February 2021)26 was used to identify gene ontology (GO)
BAE et al
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categories, with P < .05. In addition, U266 MM cells exposed to
iPSC–T cells or control U266 MM cells (no exposure) were sorted
using FACS and evaluated for their transcriptional modifications
by RNA-seq analyses using Partek Flow Genomic analysis soft-
ware. Significant gene changes in MM cells were identified with a
false discovery rate of 0.01 and a fold change of 2.

Statistical analysis
Summary results are presented as the mean ± standard devia-
tion. Groups were compared using unpaired Student t tests.
Differences were considered significant when *P < .05.

Results
BCMA-specific iPSC have pluripotency potential
and normal karyotypes
The process for reprograming of BCMA-specific IFN-γ+ CTL,
establishment of specific iPSC and EB, and differentiation into
iPSC–T cells is outlined in Figure 1A. In brief, heteroclitic
A

Day: 0 21 32 53

BCMA-CTL
reprogramming, 
iPSC establishment

Embryoid body

formation, HPC

Feeder-free culture

Re-differentiation to
T cells, expansion

Reprogramming

HPC

BCMA-CTL
IFN- + sorted

BCMA-iPSC BCMA 
embryoid body

BCMA
iPSC-T cells

D

T cells

EBV
-iPSC

BCMA
-iPSC

C

%
 P

os
iti

ve

100
80
60
40
20
0

Endoderm Mesoderm Ectoderm
BCMA-iPSC EBV-iPSC

BCMA-iPSC

Endoderm Mesoderm Ectoderm

97% 98% 94%

EBV-iPSC
99% 98% 96%

Sox-17 Brachyury Pax-6

Isotype control Target antigen

Figure 1. Establishment of BCMA-iPSC from parental BCMA-specific CTL. (A) Schema
CTL into iPSC and differentiation into BCMA-iPSC–T cells. (B, top) Representative flow cy
(positive control) by expression of the stem-cell markers SSEA-4 and TRA-1-60 but not
analyses (N = 3; mean ± standard deviation [SD]). (C, top) Representative flow cytometric
Brachyury (mesoderm), and Pax-6 (ectoderm), on BCMA-iPSC and EBV-iPSC (positive c
Representative immunohistochemistry analysis demonstrating alkaline phosphatase upreg
on BCMA-iPSC and EBV-iPSC (positive control) but not on primary T cells. Photomicrogr
Representative cytogenetic analysis of chromosomes for Giemsa banding patterns dem

BCMA-SPECIFIC INDUCED PLURIPOTENT STEM CELLS
BCMA-CTL were generated ex vivo9, and the peptide-specific
IFN-γ+ CTL were sorted using FACS and epigenetically
reprogrammed into iPSC using OCT3/4, SOX2, KLF4, and
c-MYC transcription factors delivered via Sendai viral vectors
under iMatrix-511 feeder-free conditions. The BCMA-iPSC
clones demonstrated continuous growth and development on
days 8, 12, and 16 after transduction (supplemental Figure 1).
Each iPSC clone on day 21 had high expression of SSEA-4 and
TRA-1-60, which are stem-cell markers (N = 3; 96%-100%), as did
the Epstein-barr virus (EBV)–specific iPSC clone (78%), which
served as a positive control (established from EBV LMP2A426-434

peptide [CLGGLLTMV]–specific T cells; a kind gift from Kyoto
University, Japan; Figure 1B). Parental BCMA-CTL served as a
negative control and did not express the stem-cell markers.
Another key marker of iPSC establishment was high expression
(94%-100%) of the 3 representative germ layer markers, SOX-17
for endoderm, Brachyury for mesoderm, and Pax-6 for ectoderm
(Figure 1C). In addition, immunohistochemical analyses revealed
high expression of alkaline phosphatase, a marker of stem cell
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development and self-renewal potential, on BCMA-iPSC and
EBV-specific iPSC, but not on primary T cells from blood
(negative control; Figure 1D). Cytogenetic analyses of BCMA-
iPSC chromosomes in metaphase revealed genomic stability
and a normal karyotype without abnormalities (Figure 1E).
Analysis of BCMA-iPSC clones (N = 3) using RT polymerase chain
reaction (supplemental Figure 2) showed no residual Sendai
virus, confirming viral vector clearance. These data demonstrate
the pluripotency and self-renewal potential27 of the BCMA-iPSC,
as demonstrated by the expression of stem-cell markers, capacity
to differentiate into 3 germ layers, high alkaline phosphatase
expression, and a normal karyotype.

BCMA-iPSC polarization results in mesoderm
development during EB formation
The BCMA-iPSC underwent EB formation for efficient induction
of antigen-specific HPCs. During EB formation, germ layer bias
and polarization were evidenced by gradual increases (EB day 7
> EB day 4 > EB day 2 > iPSC) in the genes associated with
mesoderm development, including ABCA4, ALOX15, BMP10,
CDH5, CDX2, FOXF1, HAND1, HAND2, HOPX, NKX2-5,
PDGFRA, PLVAP, SNAI2, and TBX328,29 (Figure 2A), which were
not detected in the CD8+ T lymphocyte somatic cell controls
(N = 2; Figure 2B). In summary, the genes contributing to
mesoderm development were gradually upregulated (*P < .05)
during EB formation from BCMA-iPSC clones (N = 2; Figure 2C),
whereas the genes contributing to self-renewal were down-
regulated (*P < .05). Morphologically, the EB was fully developed
by day 11 (photomicrograph original magnification ×100;
supplemental Figure 3). These results provide evidence that the
protocols applied for EB formation are effective in directing
development of mesoderm lineage for blood cell formation.

BCMA iPSC–T cells differentiated from
reprogrammed HPCs have high activation markers
expression without immune checkpoint expression
After BCMA-specific EB formation, the HPCs (CD34+ CD43+/
CD14− CD235a−) were sorted using FACS (Figure 3A) and
cultured in the presence of retronectin and Fc-DLL4 (chimera
protein–recombinant human δ-like protein 4) to activate notch
signaling for T-cell differentiation. The BCMA iPSC–derived
HPCs (iPSC-HPCs; N = 3) demonstrated significant (*P < .05)
cell expansion on day 7 (total cell numbers; 183 × 103 ± 67 ×
103), day 14 (440 × 103 ± 130 × 103), and day 21 (6600 × 103 ±
1047 × 103) from the number of cells initially seeded (5 × 103;
Figure 3B). During the first 14 days of culture, iPSC-HPCs
demonstrated a gradual cell differentiation (day 14 > 7 > 10
> 3) into CD3+ T lymphocytes with an increasing proportion of
CD8+ cytotoxic T cells and decreasing proportion of CD4+ Th
cells (Figure 3C). Full differentiation was completed by day 21
of culture, providing a high yield of CD3+ TCRαβ+/CD45+ and
CD8αβ+ T cells and a corresponding low level (<5%) of CD4+ Th
cells (Figure 3D). The final T-cell products (N = 3) exhibited a
high (>85%) expression of CD3, TCRαβ, CD45, CD8α, CD8β,
HLA-A2, and CD7 markers, lower CD5 (<5%), and minimum
expression of CD4, CD45RA, TCRγδ, CD16, and CD56
(Figure 3E). In addition, the iPSC–T cells expressed a high level
of CD38 (late activation), CD28, and 41BB (costimulatory), along
with a lower level of CD69 (early activation; Figure 3F-G).
Morphologically, BCMA iPSC–T cells were like normal T lym-
phocytes (supplemental Figure 4). Although parental BCMA-CTL
898 7 MARCH 2024 | VOLUME 143, NUMBER 10
expressed high levels of immune checkpoints (CTLA4, PD1,
LAG3, and TIM3) and CD83, characteristic of precursor exhausted
cells30,31 (supplemental Figures 5 and 6), iPSC–T cells lacked
expression of such exhaustion as well as senescence (CD57)
markers (Figure 3E-G). Additionally, the final iPSC–T cells had no
CD4+ regulatory T cells (CD25+ FoxP3+; supplemental Figure 7),
supporting their phenotypic characterization as a rejuvenated T-
cell product. We further evaluated BCMA-iPSC as a renewable
pool of cells for future BCMA iPSC–T–cell development. Suc-
cessful T-cell differentiation was consistently demonstrated by
both subcloned (supplemental Figure 8) and cryopreserved (8 or
16 months) (supplemental Figure 9) BCMA-iPSC. The final iPSC–T
cells demonstrated a mature CD8αβ+ T-cell phenotype and high
levels of CD3, CD45, and TCRαβ expression. These results sup-
port further subcloning and storage of antigen-specific iPSC in an
as-needed basis.
BCMA iPSC–T cells have enhanced antitumor
activities against myeloma cells through specific
recognition of cognate heteroclitic BCMA72-80

(YLMFLLRKI) peptide
BCMA iPSC–T cells were evaluated for their functional activities
and specific antitumor responses against MM. BCMA iPSC–T cells
(N = 3) displayed a high (*P < .05) level of direct cytotoxicity
against HLA-A2+/BCMA+ U266 MM cells (22%-83%) at each
effector-to-target cell ratio (1:1-20:1) but neither against antigen-
mismatched MDA-MB231 (breast cancer; HLA-A2+/BCMA−) nor
against major histocompatibility complex (MHC)–mismatched
RPMI (MM; HLA-A2−/BCMA+) (Figure 4A), indicating their cyto-
toxic activity in an antigen-specific and HLA-A2–restricted
manner. The anti-MM activities of iPSC–T cells were significantly
higher (*P < .05) than those of parental BCMA-CTL against HLA-
A2+/BCMA+ U266 MM cells. Pretreatment of U266 MM cells
overnight with 5 μg/mL of anti–HLA-A2–blocking antibody
significantly reduced the cytotoxic activity (≤5% lysis) of both
iPSC–T cells (*P < .05) and parental BCMA-CTL as compared with
their lysis of untreated U266 MM cells (Figure 4B), which further
supports their HLA-A2–specific anti-MM activities. Next, poly-
functional immune responses were characterized in response to
primary HLA-A2+/CD138+ cells from patients with MM or U266
MM cells. IPSC–T cells demonstrated significantly higher (*P <
.05) CD107a degranulation, a correlated measure of target cell
killing,32 and Th1-type cytokine (IFN-γ, interleukin 2 [IL-2], and
tumor necrosis factor α [TNF-α]) production against primary
CD138+ MM target cells (Figure 4C) or U266 cells (supplemental
Figure 10) than parental BCMA-CTL (N = 3) (Figure 4C). To
broaden our understanding of effector cell cytotoxic activity,
U266 MM target cells were evaluated for apoptosis-related cas-
cades induced during coculture with iPSC–T cells. Viable U266
MM cells (annexin V−/propidium iodide [PI−], 0 hours) advanced
through early-stage apoptosis (annexin V+/PI−, 3 hours) and late-
stage apoptosis (annexin V+/PI+, 6 hours) during coculture with
iPSC–T cells (Figure 4D). To determine the underlying mechanism
of effector cell–induced apoptosis, caspase activation was eval-
uated in MM target cells using flow cytometry. Specific caspases
activation in U266 cells was not detected after coculture with the
iPSC–T cells (N = 3) (supplemental Figure 11), suggesting a
mechanism of indirect involvement by caspase activation in the
apoptosis process. To further confirm iPSC–T-cell cytotoxicity,
MM target cell death was evaluated using an alternative assay
with PI. The iPSC–T cells induced a significantly higher level of
BAE et al
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Figure 2. Polarization of BCMA-iPSC into mesoderm germ layer. (A) Representative ScoreCard analysis demonstrating a gradual upregulation in genes associated with
mesoderm development during EB formation on days 2, 4, and 7 from BCMA-iPSC relative to an undifferentiated reference. (B) ScoreCard analysis demonstrating no specific
regulation in genes associated with germ layer development in somatic cell control CD8+ T lymphocytes (from donor 1 [D1] or donor 2 [D2]) relative to an undifferentiated
reference. (C) Summary analyses of differential gene expression profiles associated with primary germ layer development in BCMA-iPSC (clone 1 and clone 2; N = 2) and EB
(N = 2) (top) but not in somatic cell control CD8+ T lymphocytes (D1 and D2; N = 2) (bottom).
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cell death in primary CD138+ MM cells (PI+; 98% ± 2%) compared
with bulk BMMC (bone marrow mononuclear cells) (PI+; 29% ±
9%) from patients with newly diagnosed HLA-A2+ MM (*P < .05;
N = 5; Figure 4E). These results support efficient targeting of
CD138+ tumor cells within BMMC by iPSC–T cells. The specific
iPSC–T-cell proliferation (low in carboxyfluorescein diacetate
BCMA-SPECIFIC INDUCED PLURIPOTENT STEM CELLS
succinimidyl ester [CFSE]) was evaluated in response to cognate
heteroclitic BCMA72-80 (YLMFLLRKI) peptide presented on T2 or
K562-A*0201 cells (stimulator cells). The iPSC–T cells demon-
strated specific recognition of cognate peptide with a high
proliferative response (*P < .05) as compared with irrelevant HLA-
A2–specific HIV-Gag77-85 (SLYNTVATL) peptide or stimulator cells
7 MARCH 2024 | VOLUME 143, NUMBER 10 899
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alone (Figure 4F). Significantly higher peptide-specific iPSC–T-cell
proliferation (*P < .05) occurred in a time-dependent manner in
response to cognate peptide presented T2 cells (day 7 > 6 > 5) or
U266MM cells (day 6 > 5 > 4), as compared with T2 or U266 cells
alone (Figure 4G). On the tumor cell side, U266 MM cells (CFSE-
labeled) showed a decreased expression of Ki-67, a cellular
marker of proliferation, after coculture with iPSC–T cells. The
inhibited MM cell proliferation occurred in a time-dependent (16
> 4 hours) manner and iPSC–T-cell proliferation in a dose-
dependent (effector-to-target cell ratio, 5:1 > 1:1 > 1:5) manner
(Figure 4H). Finally, transcriptomic modifications regulating MM
cell death were evaluated by comparing U266 MM cells exposed
to iPSC–T cells with U266 MM cells alone (unexposed). RNA-seq
analyses demonstrated that exposed U266 cells, as compared to
unexposed cells, had changes in their transcriptional profiles,
including upregulation of genes related to apoptosis (GNLY,
DDIT4, GDF15, GOLPH3L) and a downregulation of genes
(NR4A1, NR4A2) that have a pro-oncogenic role as important
900 7 MARCH 2024 | VOLUME 143, NUMBER 10
regulators of tumor cell growth and survival (supplemental
Figure 12).33-39 Taken together, these results show that the
BCMA iPSC–T cells demonstrate polyfunctional immune
responses, direct antitumor killing, and/or specific proliferation in
response to both primary and U266 MM cells in an antigen-
specific and HLA-A2–restricted manner through their specific
recognition of cognate BCMA peptide on MM cells.
BCMA iPSC memory T cells have a rejuvenated
phenotype with improved antimyeloma activity
and display a single specific TCR clonotype
BCMA iPSC–T-cell memory subsets were evaluated for their
specific roles and functional anti-MM activities. Phenotypic ana-
lyses demonstrated that BCMA iPSC–T cells (N = 3) were pre-
dominantly (*P < .05) CD45RO+ memory CTL rather than
CD45RO− nonmemory CTL (Figure 5A). Specifically, iPSC–T cells
had high frequencies of central memory (CM; CCR7+/CD45RO+)
BAE et al
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Figure 4 (continued) Antigen-specific and HLA-A2–restricted anti-MM activities and proliferation of BCMA-specific iPSC-T cells through specific recognition of
cognate heteroclitic BCMA72-80 (YLMFLLRKI) peptide. (A) Direct cytotoxic activity of BCMA iPSC–T cells (4-hour calcein-release assay) against U266 MM cells (HLA-A2+

BCMA+) occurred in an effector cell dose-dependent manner (effector-to-target cell ratios 1:1, 5:1, 10:1, and 20:1) but neither against antigen-mismatched MDA-MB231 breast
cancer (HLA-A2+ BCMA−) nor against HLA-A2–mismatched RPMI MM (HLA-A2− BCMA+) cells. BCMA iPSC–T cells alone served as an effector cell control. Summary of 3
independent analyses (N = 3; mean ± SD). (B) Direct cytotoxic activity of BCMA iPSC–T cells and parental BCMA-CTLs (4-hour calcein-release assay) against HLA-A2+ BCMA+

U266 MM cells (● ▴) occurred in an effector cell dose-dependent manner (effector: target cell ratios = 1:1, 5:1, 10:1, and 20:1). There was complete inhibition of the cytotoxic
activity after culturing U266 MM target cells (○ △) overnight with anti-HLA-A2 mAb (5 μg/mL), demonstrating their specific anti-tumor activities in an HLA-A2–restricted
manner. Summary of 3 independent analyses (N = 3; mean ± SD). (C, top) Representative flow cytometric analyses showing higher CD107a degranulation and IFN-γ/IL-2/TNF-
α cytokine production by BCMA iPSC–T cells than by parental BCMA-CTL in response to primary HLA-A2+ CD138+ MM cells (6-hour coculture). BCMA iPSC–T cells alone
served as a negative control. Effector-to-target cell ratio, 1:1. (C, bottom) Summary of 3 independent analyses (N = 3; mean ± SD). (D, top) Representative flow cytometric
analyses showing early apoptosis (annexin V+ PI−; 3 hrs) continuing to late apoptosis (annexin V+ PI+; 6 hrs) in gated U266 MM target cells (CFSE-labeled) induced by the BCMA
iPSC–T cells. Effector-to-target cell ratio, 1:1. (D, bottom) Summary of 3 independent analyses (N = 3; mean ± SD). (E, top) Representative flow cytometric analyses showing the
cell death (PI+) of primary BMMC and CD138+ cells in BMMC from a patient with HLA-A2+ MM induced by BCMA iPSC–T cells (6-hour assay), but not in control HLA-A2+ T
cells. Effector-to-target cell ratio, 1:1. (E, bottom) Summary of 3 independent analyses (N = 3; mean ± SD). (F, top) Representative flow cytometric analyses showing the specific
proliferation of BCMA iPSC–T cells (CFSE-low) in response to cognate heteroclitic BCMA72-80 (YLMFLLRKI) peptide, not HLA-A2 irrelevant HIV Gag77-85 peptide–loaded
stimulator cells (T2 or K562-A*0201) on day 6 of coculture. BCMA iPSC–T cells alone or BCMA iPSC–T cells stimulated with T2 or K562-A*0201 cells (no peptide loaded)
served as controls. Responder-to-stimulator cell ratio, 1:1. (F, bottom) Summary of 3 independent analyses (N = 3; mean ± SD). (G, top) Representative flow cytometric analyses
demonstrating a time-dependent increase in BCMA iPSC–T-cell proliferation (CFSE-low) in response to heteroclitic BCMA72-80 (YLMFLLRKI) peptide–loaded stimulator cells
(T2, U266) on day 5, 6 or 7 of coculture. BCMA-iPSC–T cells stimulated with T2 or U266 cells (no peptide loaded) served as controls. Responder-to-stimulator cell ratio, 1:1. (G,
bottom) Summary of 3 independent analyses (N = 3; mean ± SD). (H, top) Representative flow cytometric analyses showing the downregulation of Ki-67, a cellular proliferation
marker, in U266 MM cells (CFSE-labeled) upon 4 or 16 hours of coculture with BCMA iPSC–T cells in a time-dependent and effector cell dose-dependent (effector-to-target
cell ratios 1:5, 1:1, and 5:1) manner. (H, bottom) Summary of results (N = 3; mean ± SD).
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and effector memory (EM; CCR7−/CD45RO+) cells (Figure 5B).
Both CM and EM CD8+ T-cell subsets (N = 3) demonstrated
significantly higher levels (*P < .05) of CD107a degranulation and
IFN-γ production against U266 MM cells than terminal effector
CD8+ T cells with the highest activities occurring within the CM
cell subset (Figure 5C). The CD45RO+ memory cell population
demonstrated effective and significantly higher (*P < .05)
904 7 MARCH 2024 | VOLUME 143, NUMBER 10
polyfunctional immune responses, including CD107a+ degranu-
lation and Th1 cytokine (IFN-γ, IL-2, and TNF-α) production, than
the CD45RO− nonmemory cell population in response to U266
MM cells (Figure 5D). Additionally, the CM and EM CD8+ CTL of
BCMA iPSC–T cells (N = 3) demonstrated significantly higher (*P <
.05) levels of granzyme B production against U266 MM cells than
the terminal effector CD8+ CTL (Figure 5E). The highest anti-MM
BAE et al
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Figure 5. Characterization of the high anti-MM activities within the memory subsets of BCMA iPSC–T cells. (A, top) Representative flow cytometric analyses of the
naïve:memory phenotype in BCMA iPSC–CD8+ T cells differentiated from BCMA-iPSC clones 1, 2, and 3. (A, bottom) Summary of total nonmemory (CD45RO−) and memory
(CD45RO+) cell distribution on gated viable CD8+ T cells of the BCMA iPSC–T cells (N = 3; mean ± SD). (B) Summary of naïve (CD45RO− CCR7+), CM (CD45RO+ CCR7+), EM
(CD45RO+ CCR7−), and terminal effector (TE; CD45RO− CCR7−) cell frequencies in BCMA iPSC–CD8+ T cells differentiated from each individual BCMA-iPSC clone. (C, top)
Representative flow cytometric analyses demonstrating higher levels of CD107a degranulation and IFN-γ production within the CM and EM cell subsets of BCMA iPSC–CD8+

T cells than TE cells in response to U266 MM cells (effector-to-target cell ratio, 1:1). (C, bottom) Summary of 3 independent analyses (N = 3; mean ± SD). (D, top) Repre-
sentative flow cytometric analyses demonstrating a significant induction of CD107a degranulation and Th1-type cytokine (IFN-γ/IL-2/TNF-α) production by CD45RO+ memory
cells within BCMA iPSC–CD8+ T cells, not by CD45RO− nonmemory cells, in response to U266 MM cells. Effector-to-target cell ratio, 1:1. (D, bottom) Summary of 3 inde-
pendent analyses (N = 3; mean ± SD). (E, top) Representative flow cytometric analyses showing higher granzyme B production by the CM and EM cell subsets within BCMA
iPSC–CD8+ T cells compared with TE cells in response to U266 MM cells. Effector-to-target cell ratio, 1:1. (E, bottom) Summary of 3 independent analyses (N = 3; mean ± SD).
(F) Identification of unique clonotype TCRα and TCRβ sequences based on single cell sequencing (N = 88; single cells analyses) in the complementarity-determining region 3
of BCMA iPSC–T cells.
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activities were detected consistently in the CM cell subset, indi-

cating their critical role inducing antitumor activities. Finally, the
specific TCR expressed by BCMA iPSC–T cells was examined
using single-cell sequencing of complementarity-determining
region 3. The analyses of 88 single iPSC–T cells revealed a sin-
gle clonotype (100%) of TCRα and TCRβ sequences, TRAV12-1/
TRAJ8 paired with TRBV20-1/TRBJ2-7, respectively (Figure 5F).
BCMA-iPSC–derived HPCs have a distinct
transcriptional profile that regulates CD8+ T-cell
differentiation
The BCMA-iPSC clones (N = 20) established in these studies
differentiated into 3 distinct lineages, namely, group 1: CD8+
BCMA-SPECIFIC INDUCED PLURIPOTENT STEM CELLS
T cells; iPSC-HPCs (CD8+ T cells); group 2: CD3– lymphocytes
(B cells and natural killer cells; iPSC-HPCs [CD3− lympho-
cytes]); and group 3: nonlymphocytes (monocytes and gran-
ulocytes; iPSC-HPCs [nonlymphocytes]). Based on these
results, the transcriptome of HPCs enriched from each indi-
vidual iPSC clone or primary blood from healthy donors were
sorted and evaluated to identify specific genes regulating
differentiation into the cell lineage by RNA-seq analyses. After
confirmation of high-quality purified RNA by viper output
analyses (supplemental Figures 13-16), principal component
(PC) analyses revealed distinct clusters and a low variance in
transcriptomes among the iPSC-HPCs replicates based on
their normalized gene expression (Figure 6A). The PC1 axis
distinguished iPSC-HPCs from primary blood HPCs (control),
7 MARCH 2024 | VOLUME 143, NUMBER 10 905
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whereas PC2 axis distinguished iPSC-HPCs (CD8+ T cells;
group 1) from iPSC-HPCs that differentiated into other cell
types (groups 2 and 3). Heat map analyses of the top 1000
highly expressed genes identified 4 distinct cluster patterns
based on gene expression levels across the iPSC-HPCs and
primary blood HPCs. Results are shown in Figure 6B as fol-
lows: upregulated (cluster 1) or downregulated (cluster 4)
genes in iPSC-HPCs compared with in the primary blood
HPCs, upregulated (cluster 3), or downregulated (cluster 2)
genes in iPSC-HPCs (CD8+ T cells) compared with in iPSC-
HPCs (CD3− lymphocytes) and iPSC-HPCs (nonlymphocytes)
(Figure 6B). Significant gene expression changes were
detected in iPSC-HPCs (CD8+ T cells) as compared with in
iPSC-HPC (CD3− lymphocytes) (upregulated, 485 genes;
downregulated, 672 genes) or iPSC-HPC (nonlymphocytes)
(upregulated, 474 genes; downregulated, 480 genes)
(adjusted P value < .05; Figure 6C), indicating distinctive gene
regulatory patterns controlling the commitment to T-cell
development. The transcriptional profile of iPSC-HPCs (CD8+

T cells) revealed an upregulation (>1.5 log2; Padj < .05) of
genes involved in pathways regulating memory T-cell differ-
entiation (FOXF1 and ITGA1), CD3+ T-cell maturation (LCK),
CD8+ T-cell activation and cytotoxicity (TNFRSF9 [4-1BB],
TNFSF10 [TRAIL], and GZMB), IFN induction and signaling
(MX1 and IFIT3), cytokine transport (A2M), and immune
response regulation (LTB)40,41 as opposed to iPSC-HPCs
(CD3− lymphocytes) (Figure 6D-1). In parallel, the iPSC-
HPCs (CD8+ T cells) downregulated genes (<−1.5 log2;
Padj < .05) involved in the development or function of trans-
forming growth factor β (TGF-β) receptor (TGFBR3), B cells
(CD37), and endothelial cells (S1PR1).42 Upregulation of
FOXF1, GZMB, A2M, and TBX3 and downregulation of
TGFBR3 were found repeatedly in the iPSC-HPC (CD8+ T
cells) as opposed to in iPSC-HPC (nonlymphocytes)
(Figure 6D-2). Additionally, A2M and IL7R genes were
commonly upregulated, whereas CD37 and KLF2 were
downregulated in the iPSC-HPCs (CD8+ T cells) compared
with in iPSC-HPC committed to other cell subsets and primary
blood HPCs (Figures 6Di-iii). Taken together, these results
reveal a specific repertoire of genes in the “iPSC-HPCs (CD8+

T cells)”, which may serve as biomarkers to identify iPSC
clones having appropriate genes controlling lineage-specific
commitment into mature CD8αβ+ T cells.
uest on 19 M
arch 2024
iPSC-derived HPC use lineage-specific
differentiation pathways to control commitment
into mature CD8αβ+ T cells
Next, a larger transcriptional profile analyses (>10 000 genes)
identified “common” or “unique” gene expressions between
the following cohorts: cohort 1, iPSC-HPC (CD8+ T cells) vs
iPSC-HPC (CD3− lymphocytes); cohort 2: iPSC-HPC (CD8+ T
cells) vs iPSC-HPC (nonlymphocytes); and cohort 3: iPSC-HPC
(CD8+ T cells) vs primary HPC from blood. A total of 57
genes were “commonly” upregulated (log2 fold-change >2;
Padj < .05; Figure 7A, left Venn diagram), and 110 genes were
“commonly” downregulated (log2 fold-change <−2, Padj < .05;
Figure 7A, right Venn diagram) in the iPSC-HPC (CD8+ T cells)
after an independent comparison of the 3 cohorts. The upre-
gulated genes (*P < .05) control reprogramming of somatic
cells and early T-cell development (TBX3 and HOXA11), CD8+

T-cell regulation, differentiation, or activation and memory
BCMA-SPECIFIC INDUCED PLURIPOTENT STEM CELLS
T-cell formation (IRF4, PIK3C2B, KLF15, IL-12B, and MAPK4)
and immunogenic signal transduction (ITLN1/2, TRIM6, and
EDA2R; supplemental Table 1).40,43,44 The downregulated
genes modulate cell differentiation and cell cycle regulation
(RPS6KA2, CDK3, and YPEL4); lineage-specific immune cell
differentiation (BATF2, BTN3A1, USP44, CD70, and ZXDA);
early embryonic and stem cell development (FGFR1, NPM2,
GGN, SPAG1, and CATSPER2); regulation, organization, or
development of the central nervous system (N4BP3, P2RY14,
NLGN2, SHC2, GRASP, AMIGO2, TBC1D32, CACNA1A, and
SLC6A9); formation and regulation of the vascular system,
cytoskeletal arrangement, and angiogenesis (HEYL, NEURL,
RAB39B, ANK1, PSD, LRRK1, RUNX2, and CXCL5); and pro-
motion of inflammation, mediation of cellular stress response
and homeostasis (SEMA7A, JDP2, PLA2G6, MAP3K9, PIPOX,
and TNFRSF6B) (supplemental Table 2).45-47 Finally, the
“commonly” upregulated genes were examined for specific
functional enrichment by the means of GO annotation analysis
of differentially expressed genes using DAVID Bioinformatics
Resources.26 Using gene counts (≥3; cut-off *P < .05), several
GO terms relating to cellular functions were identified,
including chemotaxis, G-protein coupled receptor signaling,
notch signaling, immune response, inflammatory response, cell
junction, TNF–activated receptor activity, phospholipid bind-
ing, and calcium channel activity (Figure 7B). Furthermore, key
GO terms related to immune and inflammatory responses were
identified, which can contribute to the specific T-cell lineage
commitment. Thus, these results demonstrate that iPSC-HPCs
use “unique” lineage-specific transcriptional programs for
their cell differentiation into specific mature CD8α+β+ T cells.
Discussion
Adoptive cell therapy with tumor-redirected CAR-Ts and TILs
(tumor infiltrating lymphocytes) have provided significant clin-
ical benefits, including a high response rate and durable com-
plete remission in some patients with cancer.8,9 However, there
remains significant challenges to overcome T-cell exhaustion
and immune dysfunction seen with these therapies, which
hampers both sustained cell expansion, tumor targeting, and
overall treatment efficacy.48 Additionally, questions remain for
adoptive cell therapy, including use of uncharacterized bulk
T cells to generate CAR-Ts and the requirement of solid tumors
to isolate TILs, further highlighting the need to develop addi-
tional therapeutic approaches. Epigenetic reprogramming of
antigen-specific T cells offers an alternative strategy to provide
revitalized effector cells with a high expansion potential in the
absence of cognate antigen stimulation and improved func-
tional antitumor responses. The key to iPSC technology
involves epigenetic reprogramming of parental antigen-specific
CD8+ CTL, which display an exhausted phenotype into a
pluripotent state followed by differentiation into rejuvenated
effector T cells with neither inhibitory/senescence molecules
induction nor cognate antigen stimulation, which directly align
with their increased polyfunctional antitumor activities. The key
to current studies involves reprogramming of parental antigen-
specific CD8+ CTL, which display an exhausted precursor
memory phenotype (CD83+/CD45RO+),30,31 into a pluripotent
state followed by differentiation into rejuvenated effector T
cells with neither inhibitory/senescence molecules induction
nor any antigen stimulation. Unlike CAR-Ts and TILs, iPSC–T
7 MARCH 2024 | VOLUME 143, NUMBER 10 907
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cells provide an expandable and renewable source of pheno-
typically defined TAA targeting physiologically functional T
cells for therapeutic application.

In this study, heteroclitic BCMA-CTL with a precursor
exhausted memory phenotype30,31 were epigenetically
reprogrammed to iPSC with the transcription factors OCT3/4,
SOX2, KLF4, and c-MYC.9,49 Our protocol combined several
key cytokines and small molecule agonists or antagonists to
modulate the molecular pathways promoting mesoderm
development during EB formation through a gradual polari-
zation and activation of specific transcriptional regulators. The
modulation of pathway signaling during polarization affects
the balance between production of cells that resemble
extraembryonic hematopoietic cells and hematopoietic pro-
genitors.50,51 Accordingly, we found a significant induction of
specific progenitor cells, which were then further induced to
undergo T-cell development under feeder-free culture con-
ditions in the presence of Fc-DLL4 signaling with retronectin.
To induce effective antigen-specific responses by CD8+ CTL,
the CD8αβ coreceptor binds to MHC class I molecule,
908 7 MARCH 2024 | VOLUME 143, NUMBER 10
stabilizes the interaction between TCR and cognate peptide–
MHC-I complex, and triggers activation through intracellular
interaction of the CD8α cytoplasmic tail with Src-family pro-
tein kinases Lck and LAT, which subsequently phosphorylates
the TCR-CD3 complex.52 CD8+ CTL vary by several orders of
magnitude in their sensitivity to peptide bound to MHC-I,
which is determined by TCR affinity and CD8αβ coreceptor
expression, which enhances the sensitivity to cognate antigen
by 100-fold compared with CD8αα expressing T cells.53 The
ultimate goal of this study was to polarize and expand highly
functional mature BCMA-specific CD8αβ T cells from the
antigen-specific iPSC-HPCs to efficiently target MM cells. The
procedures used for T-cell differentiation was improved
from previously reported studies.13-16 We achieved BCMA
iPSC–T-cell maturation, producing predominantly CD45RO+

memory CTL, which correlates with higher antitumor func-
tionality than parental BCMA-CTL. In addition, the process
of differentiation into BCMA-specific CD8αβ+ T cells was
accomplished in the absence of feeder cells commonly
included by other studies, which avoids a safety concern and
challenge of clinical translation. The procedure of T-cell
BAE et al
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differentiation was also shortened by reducing the early
transitional double-positive CD4+ CD8+ developmental
stage.

Previously, we and others have reported that repeated antigen
stimulation to generate the antigen-specific T cells drives those
effector cells into an exhausted state characterized by immune
checkpoint upregulation that compromises their antitumor
functionality.9,54 In this study, the differentiated memory iPSC–T
cells lacked the inhibitory/senescence markers (CTLA4, PD1,
LAG3, and TIM3; CD57), which were highly expressed on the
parental precursor exhausted BCMA-CTL, which were used to
establish iPSC. The absence of immune checkpoint expression
was directly aligned with an improved proliferation capacity and
increased antitumor activity as compared with the parental
BCMA-CTL with their high specificities. Their effective anti-MM
activities and polyfunctional immune responses were aligned
with a distinct sole TCR rearrangement in both TCRα and
TCRβ that was identified by single-cell sequencing of
complementarity-determining region 3 analyses. This outcome
supports the use of antigen-specific iPSC as an effective pro-
tocol to generate functional CD8αβ+ T cells as well as an effi-
cient source to identify antigen-specific TCR, which can be
applied to alternative therapeutic applications. We are currently
evaluating these unique TCRα and TCRβ sequences identified
in this study to develop a TCR-based immunotherapy strategy
to efficiently target MM.

The key limitation we encountered during the T-cell differentia-
tion was the lack of previously identified biomarkers for selecting
the iPSC clones programmed for T-cell commitment, which
results in an inefficient process to generate the final antigen-
specific T-cell population. Mirroring differentiation by blood
stem cells,55 we found that HPCs (CD34+ CD43+/CD14−

CD235a−) developed from iPSC during EB formation used
various cell differentiation pathways, leading to lymphoid- or
myeloid-specific lineages. This study highlights the need to
overcome inefficient and time-consuming procedures used to
secure iPSC clones programmed for CD8+ T-cell differentiation.
Overall, we established 20 different iPSC clones from parental
BCMA-CTL generated from different donors and then pro-
ceeded through the entire differentiation and expansion process
(53 days) before knowing the final cell lineage outcome. Without
question, selection of appropriate iPSC clones destined for CD8+

T-cell lineage development would be more efficient and increase
our overall success in developing an effective stem cell–based
immunotherapy. Consequently, we prioritized identification of
transcriptional profiles predictive of iPSC-HPCs commitment into
T cells to serve as biomarkers in future studies. Our RNA-seq
analyses revealed distinct genome-wide shifts and transcrip-
tional profiles in iPSC-derived HPCs committed to CD8+ T cells
development, including upregulation of genes promoting CD3+

T cells development or maturation, CD8+ CTL activation or
function, memory T-cell development, IFN induction, cytokine
transport, and immune response regulation.56 In parallel, specific
repression genes were identified in the iPSC-HPCs, which control
TGF-β receptor and B-cell development, rearrangement of
immunoglobulin heavy chain, leukocyte tethering, and inhibitory
receptors.57-60 Taken together, these findings identify genetic
mechanisms and specific regulatory elements that play key roles
in iPSC-HPCs destined for T-cell–specific commitment that could
help to further design regenerative medicine protocols.
BCMA-SPECIFIC INDUCED PLURIPOTENT STEM CELLS
In summary, these results provide the preclinical framework to
epigenetically reprogram exhausted antigen-specific CTL into
iPSC capable of self-renewal and differentiation into revitalized
cognate antigen-specific CD8αβ+ memory T cells through
understanding of their key regulatory pathways. With the proof-
of-principle platform provided here, we aim to develop an
iPSC-based immunotherapy to overcome antigen-specific T-cell
exhaustion/senescence and potentially promote effective and
long-term antitumor immunity to improve patient outcome in
MM and other cancers.
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