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In silico Pathway Activation Network
Decomposition Analysis (iPANDA)
as a method for biomarker development
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Signalling pathway activation analysis is a powerful approach for extracting biologically

relevant features from large-scale transcriptomic and proteomic data. However, modern

pathway-based methods often fail to provide stable pathway signatures of a specific

phenotype or reliable disease biomarkers. In the present study, we introduce the in silico

Pathway Activation Network Decomposition Analysis (iPANDA) as a scalable robust method

for biomarker identification using gene expression data. The iPANDA method combines

precalculated gene coexpression data with gene importance factors based on the degree of

differential gene expression and pathway topology decomposition for obtaining pathway

activation scores. Using Microarray Analysis Quality Control (MAQC) data sets and

pretreatment data on Taxol-based neoadjuvant breast cancer therapy from multiple sources,

we demonstrate that iPANDA provides significant noise reduction in transcriptomic data and

identifies highly robust sets of biologically relevant pathway signatures. We successfully

apply iPANDA for stratifying breast cancer patients according to their sensitivity to

neoadjuvant therapy.
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T
he application of novel supervised learning algorithms to
large-scale transcriptomic data has the potential to trans-
form conventional approaches for disease classification,

personalized medicine and development of prognostic models.
However, their use as a modality for clinical applications is
hindered by several recognized challenges and limitations. One of
the most relevant challenges in transcriptomic data analysis is the
inherent complexity of gene network interactions, which remains
a significant obstacle in building comprehensive predictive
models. Moreover, high diversity of experimental platforms and
inconsistency of the data coming from the various types of
equipment—may also lead to the incorrect interpretation of the
underlying biological processes. Although a number of data
normalization approaches have been proposed over the recent
years1,2, it remains difficult to achieve robust results over a group
of independent data sets even when they are obtained from the
same profiling platform3. This may be explained by a range of
biological factors, such as wide heterogeneity among individuals
on the population basis, variance in the cell cycle stage of the cells
used or a set of technical factors, such as sample preparation or
batch variations in reagents.

Despite these challenges, various transcriptomic data analysis
algorithms have been developed in both academic and commer-
cial settings, and numerous attempts have been made to apply
these algorithms clinically, particularly, for predicting patient
response to various anti-cancer therapies4–6. Canonically, these
approaches are intended to identify differentially expressed genes
between groups of samples. Although this can lead to the
identification of prospective genetic biomarkers and expression
signature patterns of the process under study, it fails to capture
subtle differences between samples that arise from dynamic
interactions between genes at the level of signalling networks.
Additionally, noise generated by variations in experimental
protocols may further affect the ability of any approach to
accurately detect the distinction between samples. To circumvent
these limitations, a number of computational scoring platforms
that can project gene expression data into a molecular signalling
network have been proposed for integrative pathway analysis7.
The major advantage of pathway-based methods is their
capability to perform biologically relevant dimension reduction
as a result of the analysis. However, despite significant
advancements, current pathway-based methods are still
imperfect in extrapolating the functional states of
transcriptomes into the biological networks. Many popular
pathway-based algorithms, such as Gene Set Enrichment
Analysis (GSEA) and its extensions, rely solely on gene
enrichment statistics, treating pathways as unstructured sets of
genes8. Another group, including Signalling Pathway Impact
Analysis (SPIA), Topology Gene-Set Analysis, and DEGraph,
treats pathways as directed or undirected graphs representing
networks of biochemical interactions at gene and protein levels9–
11. Oncofinder algorithm represents a halfway approach, where
information about pathway topology is used to assign activation
or repression roles of particular genes in the pathway and then
estimate its overall activation12. Although very helpful, these
approaches cannot overcome other above-mentioned limitations,
posing a need for development of the new large-scale analytical
methodologies that infer complex transcriptomic changes
more accurately into the network of biologically relevant
signalling axes.

In this study, we suggest a novel method for large-scale
transcriptomic data analysis called in silico Pathway Activation
Network Decomposition Analysis (iPANDA). We demonstrate
the performance of this method by using multiple paclitaxel
breast cancer treatment data sets obtained from Gene Expression
Omnibus (GEO)13. Breast cancer data was chosen for the analysis

as one of the most challenging in several ways. Since breast
cancer has a high degree of intertumour and intratumoural
heterogeneity, this cancer type is one of the most difficult in terms
of outcome and treatment response prediction14. This is
especially true for a group of tumours with poor prognosis and
fewer number of effective treatments such as estrogen receptor
negative breast cancer types (human epidermal growth factor
receptor 2 (HER2)-positive and HER2-negative)15. Thus,
traditional methods for transcriptomic data analysis may not be
sufficient in this particular case. Breast cancer is also the second
most common cancer in the US after skin cancer and second
leading cause of cancer death in women after lung cancer16.
Hence, there is an unmet need for development of new generation
highly robust transcriptomic data analysis methods. Our study
demonstrates that iPANDA is an effective tool for biologically
relevant dimension reduction in transcriptomic data. Using
neoadjuvant therapy pretreatment breast cancer data with
known treatment outcome and receptor status (estrogen
receptor and HER2), we show that iPANDA is capable of
producing highly robust sets of pathway markers, which can be
further used for stratification of samples into responder and
non-responder groups.

Results
Overview of the iPANDA method. Fold changes between the
gene expression levels in the samples under investigation (tumour
samples) and an average expression level of samples within the
normal set is used as input data for the iPANDA algorithm. Since
some genes may have a stronger effect on the pathway activation
than others, the gene importance factor has been introduced.
Several approaches of gene importance hierarchy calculation have
been proposed during the last few decades7. The vast majority of
these approaches aim to enrich pathway-based models with
specific gene markers most relevant for a given study. While some
of them use detailed kinetic models of several particular metabolic
networks to derive importance factors17, in others, gene
importance is derived from the statistical analysis of the gene
expression data obtained for disease cases and healthy
samples8,18. Alternatively, several approaches are based on the
topological decomposition of the pathway maps originally
proposed in 2005 (ref. 19). These approaches tend to give more
weight to the genes that occupy the central positions on the
map20. Importantly, however, the measure of gene centrality
strongly varies among algorithms, often leading to highly variable
results.

Here we propose a novel approach that integrates different
analytical concepts described above into a single network model
as it simultaneously exploits statistical and topological weights for
gene importance estimation (Fig. 1). The smooth threshold based
on the P values from a t-test performed on groups of normal and
tumour samples is applied to the gene expression values. The
smooth threshold is defined as a continuous function of P value
ranging from 0 to 1. The statistical weights for genes are also
derived during this procedure. The topological weights for genes
are obtained during the pathway map decomposition. The
topological weight of each gene is proportional to the number
of independent paths through the pathway gene network
represented as a directed graph.

It is well known that multiple genes exhibit considerable
correlations in their expression levels21. Most algorithms for
pathway analysis treat gene expression levels as independent
variables, which, despite the common belief, is not suitable when
the topology based coefficients are applied. Indeed, due to
exchangeability, there is no dependence of pathway activation
values on how the topology weights are distributed over a set of
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coexpressed genes with correlated expression levels, and hence
correlated fold changes. Thus, the computation of topological
coefficients for a set of coexpressed genes is inefficient, unless a
group of coexpressed genes is being considered as a single unit.
To circumvent this challenge, gene modules reflecting the
coexpression of genes are introduced in the iPANDA
algorithm. The wide database of gene coexpression in human
samples, COEXPRESdb21, and the database of the downstream
genes controlled by various transcriptional factors22 are utilized
for grouping genes into modules. In this way, the topological
coefficients are estimated for each gene module as a whole rather
than for individual genes inside the module.

The contribution of gene units (including gene modules and
individual genes) to pathway activation is computed as a product
of their fold changes in logarithmic scale, topological and
statistical weights. Then the contributions are multiplied by a
discrete coefficient which equals to þ 1 or � 1 in the case of
pathway activation or suppression by the particular unit,
respectively. Finally, the activation scores, which we refer to as
iPANDA values, are obtained as a linear combination of the
scores calculated for gene units that contribute to the pathway
activation/suppression. Therefore, the iPANDA values represent
the signed scores showing the intensity and direction of pathway
activation (see Methods section for details).

Pathway quality metrics. Although currently there are several
publicly available pipelines for benchmarking the transcriptomic
data analysis algorithms7,23–25, our aim was to generalize the
approaches for pathway-based algorithm testing and reveal the
common features of reliable pathway-based expression data
analysis. We term these features ‘pathway analysis quality
hallmarks’. Efficient methods for pathway-based transcriptomic
data analysis should be capable to perform a significant noise
reduction in the input data and aggregate output data as a small
number of highly informative features (pathway markers).

Scalability (the ability to process pathways with small or large
numbers of genes similarly) is another critical aspect that should
be considered when designing a reliable pathway analysis
approach, since pathway activation values for pathways of
different sizes should be equally credible. The list of pathway
markers identified should be relevant to the specific phenotype or
medical condition, and robust over multiple data sets related to
the process or biological state under investigation. The calculation
time should be reasonable to allow high-throughput screening of
large transcriptomic data sets. To address the iPANDA algorithm
in respect to these hallmarks and to fully assess its true potential
and limitations, we have directly compared the results obtained
by iPANDA using the breast cancer and Microarray Analysis
Quality Control (MAQC)-I data sets with five other widely used
third-party viable alternatives (GSEA8, SPIA9, Pathway Level
Analysis of Gene Expression (PLAGE)26, single sample Gene Set
Enrichment Analysis (ssGSEA)27 and Denoising Algorithm based
on Relevant network Topology (DART)28). Moreover, we
compared the performance of our iPANDA-based classifier to
performance of the gene-level predictors developed by the best
MAQC-II (ref. 23) and IMPROVER24 teams using the data sets
from MAQC-II challenge in respect to the ability to discriminate
between cancer end points.

iPANDA as a tool for noise reduction in transcriptomic data.
One of the major issues that should be addressed when
developing a novel transcriptomic data analysis algorithm is the
ability of the proposed method to reduce noise while retaining
the biologically relevant information of the results. Since
pathway-based analysis algorithms are considered dimension
reduction techniques, the pathway activation scores should
represent collective variables describing only biologically
significant changes in the gene expression profile.

In order to estimate the ability of the iPANDA algorithm to
perform noise reduction while preserving biologically relevant
features, we performed an analysis of the well-known MAQC
data set (GEO identifier GSE5350) (ref. 29). It contains data for
the same cell samples processed using various transcriptome
profiling platforms. A satisfactory pathway or network analysis
algorithm should reduce the noise level and demonstrate a higher
degree of similarity between the samples in comparison to the
similarity calculated using gene set data. To estimate gene level
similarity only fold changes for differentially expressed genes
(t-test P value o0.05) were utilized. Pearson correlation was
chosen as a metric to measure the similarity between samples.
Sample-wise correlation coefficients were obtained for the same
samples profiled on Affymetrix and Agilent platforms. Similar
procedure was performed using pathway activation values
(iPANDA values). The results acquired for the set of samples
from MAQC data are shown in Fig. 2. Notably, the similarity
calculated using pathway activation values generated by the
iPANDA algorithm significantly exceeds the one calculated using
fold changes for the differentially expressed genes (mean
sample-wise correlation was over 0.88 and 0.79, respectively).
To further validate our algorithm, we directly compared its noise
reduction efficacy with that of other routinely used methods for
transcriptome-based pathway analysis, such as SPIA, GSEA,
ssGSEA, PLAGE and DART (Supplementary Fig. 1). The mean
sample-wise correlation between platforms was 0.88 for iPANDA
compared with 0.53 for GSEA, 0.84 for SPIA, 0.69 for ssGSEA,
0.67 for PLAGE and 0.41 for DART. Furthermore, the sample-
wise correlation distribution obtained using iPANDA values is
narrowed to a range of 0.79 to 0.94, compared with � 0.08–0.80,
0.60–0.92, 0.61–0.74, 0.45–0.75 and � 0.11–0.60 for GSEA, SPIA,
ssGSEA, PLAGE and DART, respectively (Supplementary Fig. 1).
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Figure 1 | The general scheme of iPANDA calculation pipeline. Fold

changes between the gene-expression levels in the samples under

investigation, and an average expression level of samples within the normal

set serves as input data for the iPANDA algorithm. The major steps of

iPANDA algorithm include estimation of statistical weights (1), co-

expression-based grouping of genes into modules (2), estimation of

topological weights (3) and calculation of iPANDA pathway activation

scores (4).
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It is important to mention that iPANDA does not assign more
weights to genes that tend to be reliably coexpressed using
information from COEXPRESSdb database. The information
from COEXPRESSdb is utilized solely for grouping genes into
modules, and hence cannot introduce any favourable bias towards
iPANDA in this assessment. Even when the feature for grouping
genes into modules is ‘switched off’, meaning that all genes are
considered individually and no information from COEXPRESSdb
is being utilized, iPANDA scores show higher sample-wise
similarity between data obtained using various profiling platforms
compared with the similarity calculated on the gene level
(Supplementary Fig. 2).

Taken together, iPANDA demonstrates better performance for
the noise reduction test in comparison to other pathway analysis
approaches, suggesting its credibility as a powerful tool for noise
reduction in transcriptomic data analysis.

Biomarker identification and relevance. As a next step we have
addressed the iPANDA ability to identify potential biomarkers
(or pathway markers) of the phenotype under investigation.
One of the commonly used methods to assess the capability of
transcriptomic pathway markers to distinguish between two
groups of samples (for example, resistance and sensitivity to
treatment) is to measure their receiver operating characteristics
area under curve (AUC) values. The capacity to generate a high
number of biomarkers with high AUC values is a major
requirement for any prospective transcriptomic data analysis
algorithm to be used in prediction models.

To estimate the capability of our method to produce potential
biomarkers, we have selected several gene expression data sets
from breast cancer patients with measured response to paclitaxel
treatment. iPANDA algorithm was applied to obtain pathway
activation scores for each sample. For each breast cancer data set
used in this study, we have carefully selected a tissue specific
normal control (microarrays derived from the healthy subjects
using the same profiling platform as in tumour data set, see
Supplementary Table 2). t-test P values for genes were calculated
over the whole group of breast cancer samples against healthy
tissue samples in order to estimate the statistical weights, which

were further used to obtain sample-wise pathway activation
iPANDA scores. Cross-validation approach using samples from
GSE20194 data set was utilized to obtain the threshold values for
calculation of statistical weights and merging the gene modules.
To avoid introduction of the artificial inter-data sets bias for the
gene weights as a result of this approach, the gene weights in
iPANDA were calculated for each of the data sets used for this
analysis separately (independently).

Lists of the top 30 paclitaxel treatment sensitivity pathway
markers obtained for the estrogen receptor negative (ERN)
HER2-positive (HER2P) and ERN HER2-negative (HER2N)
breast cancer types are given in Fig. 3. Four and five independent
data sets were used for comparison of ERN HER2P and ERN
HER2N cancer types, respectively. Signalling pathways were
ranked by their average AUC values over independent data sets
examined. Pathways like ERBB, PTEN, BRCA1, PPAR, TGF-beta
and RAS, previously reported to trigger paclitaxel treatment
response, can be found in these lists30–34. Although the iPANDA-
generated pathway marker lists obtained within data on the same
cancer type have noticeable intersection, the lists of markers differ
significantly between cancer types. This complies with the
observation that the mechanisms of paclitaxel treatment
resistance depend on the breast cancer subtype35,36.

Pathways with various numbers of member genes ranging from
o10 members (vascular endothelial growth factor pathway
adhesion turnover) to over 400 (AKT Signalling Main pathway)
can be found in the lists. This illustrates that iPANDA algorithm
treats small and large pathways in the same way, indicating the
scalability hallmark of valid pathway analysis methods.

Similar calculations were performed by using five different
third-party pathway analysis algorithms such as GSEA, SPIA,
PLAGE, DART and ssGSEA. As demonstrated in Supplementary
Figs 3–7, the number of robust pathway markers and correspond-
ing AUC values for these markers obtained by each one of the
third-party methods was substantially lower compared with
iPANDA.

To further estimate the ability of iPANDA to detect relevant
pathways, we have assessed its performance by using the
prioritization criteria according to recently proposed pathway
methods benchmarking pipeline25. In this pipeline, prioritization
represents the ability of the method to assign higher ranks to
pathways relevant to a given condition in a test with direct
comparison between two groups of samples. Although the
iPANDA algorithm did not surpass the alternative methods
which were reported to be the best according to the prioritization
criteria (PADOG37 and MIPA38) (Supplementary Fig. 8 and
Supplementary Note 1), it outperforms some other popular
methods including ssGSEA and PLAGE, and demonstrates the
ability to generate highly relevant results, since the pathways
expected to be perturbed have significantly lower ranks (higher
scores) than if it was expected by chance. Moreover, the
prioritization pipeline relies on a very specific set of pathways
expected to be perturbed under certain disease conditions. Each
of these pathways consists of genes associated with multiple
mechanisms of biological regulation, therefore, these pathways
contain several sparsely interconnected components. In contrast,
iPANDA is specifically designed to address regulatory circuits
with well-defined topology (for example, mTOR pathway, AKT
pathway, and so on.). Hence, the design of this particular
prioritization assessment may subsequently lead to an
underestimation of iPANDA performance.

iPANDA produces highly robust set of biomarkers. One of the
most important shortcomings of modern pathway analysis
approaches is their inability to produce consistent results for
different data sets obtained independently for the same biological

Pearson coefficient

iPANDA

Genes

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 2 | Sample-wise similarity between data obtained using various

profiling platforms. Pearson sample-wise correlation coefficients between

gene expression levels (differential genes only are used with group t-test

P value o0.05) obtained with Affymetrix and Agilent platforms for the

same set of samples are shown in blue. Pearson sample-wise correlations

between corresponding pathway activation values calculated using iPANDA

are shown in yellow. Dashed and dotted lines represent, respectively, the

median with upper and lower quartiles of the empirical distribution. Gene

expression data was obtained from MicroArray Quality Control (MAQC)

data set (GEO identifier GSE5350). Application of iPANDA leads to higher

correlation between the data obtained using different experimental

platforms for the same samples.
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Figure 3 | Receiver operating characteristic AUC values for 30 highest rated by AUC pathway markers. Pathway markers of responders/non-

responders to paclitaxel for ERN HER2P (left) and ERN HER2N (right) breast cancer treatment were obtained using iPANDA. Up and downregulated

pathways in responders group compared with non-responders group are shown in red and blue, respectively. The saturation of the colour denotes to

corresponding AUC value. The same signalling pathways are found to be markers of responders/non-responders to paclitaxel treatment for four (ERN

HER2P) or five (ERN HER2N) independent data sets obtained from GEO. Nineteen and eight pathway markers for ERN HER2P and ERN HER2N breast

cancer, respectively, demonstrate AUC values higher than 0.7 for all data sets examined.
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case. Here we show that iPANDA algorithm applied to the breast
cancer data overcomes this flaw and produces highly consistent
set of pathway markers across the data sets used in the study. In
particular, the iPANDA values for 19 and 8 pathways for ERN
HER2P and ERN HER2N breast cancer types, respectively, can be
utilized as paclitaxel response classifiers with AUC values higher
than 0.7 for all data sets examined. Whereas, all third-party
algorithms tested (including GSEA, SPIA, DART, ssGSEA and
PLAGE) failed to obtain even a single pathway marker (with the
AUC threshold equal to 0.7) common for all data sets examined
(for both cancer types) (Supplementary Figs 3–7), suggesting that
iPANDA algorithm is an advantageous method for biologically
relevant pathway marker development compared with the other
pathway-based approaches.

The common marker pathway (CMP) index (see Methods
section for details) was applied to paclitaxel treatment response
data for both ERN HER2P and ERN HER2N breast cancer types
in order to estimate the robustness of the biomarker lists.
Pathway marker lists obtained for four independent data sets
were analysed. The calculation of pathway activation scores was
performed using the iPANDA algorithm and its versions with
disabled gene grouping and/or topological weights (Fig. 4). The
‘off’ state of topology coefficients means that they are equal to 1
for all genes during the calculation. Also, the ‘off’ state for the
gene grouping means that all the genes are treated as individual
genes. The application of the gene modules without topology-
based coefficients reduces the robustness of the algorithm as well
as the overall number of common pathway markers between data
sets. Turning on the topology-based coefficients just slightly
increases the robustness of the algorithm. Whereas using
topology and gene modules simultaneously dramatically
improves this parameter for both cancer types. This result
implies that the combined implementation of the gene modules
along with the topology-based coefficients serves as an effective
way of noise reduction in gene expression data and allows one
to obtain stable pathway activation scores for a set of
independent data.

iPANDA biomarkers as classifiers for prediction models. High
AUC values for the pathway markers shown in Fig. 3 suggest that
iPANDA scores may be efficiently used as classifiers for biological
condition prediction challenges. To test this hypothesis, pathway
activation scores obtained using iPANDA were applied to the
identification of paclitaxel neoadjuvant therapy sensitivity in

breast cancer. The normalized iPANDA scores were calculated
for all samples in six data sets and merged for the paclitaxel
treatment response prediction procedure (Table 1). Prediction
models were built for three separate end points: paclitaxel
sensitivity in ERN HER2N tumours only, in ERN HER2P
tumours only and in all breast cancer types merged together
(including those with ERP HER2N type and tumours with
unknown receptor status). Samples were divided into training and
validation sets to measure the performance of prediction models
in respect to the end points under study on the data set-wise
basis. Samples from GSE20194 and GSE20271 data sets were used
as training, while samples from other data sets, where samples
with particular cancer type under consideration were available,
were used for validation. Not all of the six data sets used for the
analysis contain samples with both cancer types. Statistical
weights were obtained using the whole group of case samples
(including both responders and non-responders) and the group
of paired normal samples (Supplementary Table 2) separately for
training and validation sets. The patients’ clinical outcome used
for benchmarking (response to paclitaxel) was not exposed to
iPANDA in any way, which precludes information leakage across
different phenotypes.

In order to classify the samples as responders or non-
responders, the random forest models were developed using
iPANDA scores obtained for training sets of samples for each
end point (see Methods section). Subsequently, performance of
these models was measured using validation sets. Matthew’s
Correlation Coefficients (MCC), specificity and sensitivity metrics
were applied to evaluate performance of the models (Fig. 5). MCC
metrics were chosen for the ease to calculate and due to their
informativeness even when the distribution of the two classes is
highly skewed23. The similar random forest models were built
using pathway activation (enrichment) scores obtained by other
pathway analysis algorithms, including SPIA, GSEA, DART,
ssGSEA and PLAGE. Moreover, to fully assess the performance of
iPANDA-based paclitaxel sensitivity prediction models, we have
trained the similar random forest models on four different gene
expression subsets: expression levels of all genes (logGE), fold
change for all genes between the training set and corresponding
normals (logFC), expression levels of most differentially
expressed genes (t-test Po0.05) (logDGE), and fold change in
expression levels of most differentially expressed genes (t-test
Po0.05) between the training and corresponding normal breast
tissue data sets (logDFC). Logarithmic scale was used for training
the gene level models. All pathway-level and gene-level data was
Z-score normalized separately for each GEO data set used
(see online Methods for details).

As demonstrated in Fig. 5, the models developed using
normalized iPANDA scores distinguished paclitaxel treatment
responders from non-responders with high accuracy. Further-
more, after Z-score normalization of the iPANDA scores, high
accuracy was achieved for all the data sets used for validation,
regardless of the differences across these data sets (Supplementary
Data 1). The MCC for iPANDA-based paclitaxel response
prediction model in ERN HER2P patients equals to 0.758 with
specificity and sensitivity of 0.949 and 0.778, respectively. ERN
HER2N breast cancer and especially its triple negative subclass
(also progesterone receptor negative) is known to have the most
diverse phenotype39. Therefore, prediction of the therapy
outcome for this type of breast cancer is a challenging task.
Nevertheless, the application of iPANDA values as input for
random forest classifiers for paclitaxel treatment response
prediction in ERN HER2N breast cancer shows relatively high
accuracy, with MCC, specificity and sensitivity of the model equal
to 0.532, 0.930 and 0.545, respectively. While this result is lower
compared with prediction accuracy obtained for ERN HER2P
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Figure 4 | Common marker pathway (CMP) index for responders/

non-responders to paclitaxel treatment of ERN HER2P and ERN HER2N

breast cancer types. The index is calculated for four independent data sets

obtained from GEO (GSE20194, GSE20271, GSE32646 and GSE50948) for

each cancer type. Index demonstrates the robustness of the pathway

marker lists between data sets. Independent application of the gene

modules and topological coefficients did not improve the robustness of the

algorithm for estimation of pathway activation; however, combined

application resulted in significant improvement.
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cancers, it is sufficient for considering further evaluation of the
proposed model as a future decision making support system
in clinic.

Moreover, taxol-based neoadjuvant therapy response
prediction with iPANDA-based random forest model was
performed using mixed data regardless of the cancer type of the
samples. The performance metrics of the model were 0.422, 0.854
and 0.563 for MCC, specificity and sensitivity, respectively.
Notably, the performance of the model on samples from various
data sets used for validation was not homogeneous. Interestingly,
all 28 samples (8 responders and 20 non-responders) from the
GSE22513 data set were correctly separated into two groups
(MCC equals 1.000), whereas for the GSE41998 data set the MCC
value generated by the model was only 0.254. This observation
demonstrates that the distinctions between data sets can be
blurred, but not completely eliminated when developing

prediction models. Nevertheless, the results show that patients’
classification according to their potential treatment response can
be successful even in case when receptor status is unknown. These
finding suggest that despite the differences between breast cancer
types, both ERN HER2P and ERN HER2N cancer share common
features which can define treatment response sensitivity.

Although we acknowledge that the methods used for
comparison in this study were initially designed for the relevant
pathway assessment for a given condition rather than for
phenotype prediction, we have selected these methods for
comparison as they are among the most cited and highly
acclaimed algorithms in the community. Nevertheless, we expect
that a good pathway analysis approach would produce robust
scores, which should demonstrate a certain degree of discrimi-
native power if the pathway database is chosen accordingly to the
biological condition under study. Comparison to other models

Table 1 | Training and validation data sets used in paclitaxel neoadjuvant therapy sensitivity prediction experiment in breast
cancer patients.

End point Training set Validation set

GEO data sets Number of samples GEO data sets Number of samples

ERN HER2P GSE20194, GSE20271 38 GSE32636, GSE50948 57
ERN HER2N GSE20194, GSE20271 108 GSE32646, GSE41998, GSE50948 115
All cancer types GSE20194, GSE20271 285 GSE22513, GSE32646, GSE41998, GSE50948 299
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based on pathway activation (enrichment) scores obtained with
other pathway activation algorithms shows that iPANDA-based
classifiers outperform these methods for all three end points
examined. Moreover, iPANDA surpasses the similar random
forest models trained on gene-level data, implying that iPANDA
is an effective tool for noise reduction in gene expression data,
while preserving the biologically relevant features. Interestingly,
using fold changes between tumour samples and normal samples
instead of solely gene expression increases the predictive power of
the model, while the use of differentially expressed genes only
does not lead to significant improvement. Moreover, pathway
analysis algorithms that explicitly account for fold changes
(iPANDA and SPIA) generate better results when used as inputs
for prediction models in comparison to other methods. This
observation demonstrates that direct incorporation of the
expression data from corresponding normal tissue into the fold
change calculation, can be a valuable addition when developing
prediction models.

To further evaluate the proficiency of iPANDA for reliably
classifying a sample with respect to the various clinical
parameters, we have used the training and validation data sets
(refer to Supplementary Note 2 and Supplementary Fig. 9) along
with the best gene-level predictive models reported by the
MAQC-II project as a reference for comparison. We have also
compared the prediction power of our iPANDA-based random
forest classifier to the best methods from the IMPROVER
challenge. Using the iPANDA scores for cancer-related pathways
to train prediction models, allows to obtain significantly better
results compared with the gene-level prediction models developed
by either our team or MAQC-II consortium (for 3 out of 5 cancer
end points available for comparison F, J, K). The highest increase
in performance was achieved on neuroblastoma event free
survival (end point K) (0.894 against 0.575 for the best MAQC-II
team). These observations further support our notion that
iPANDA algorithm can provide an efficient noise reduction
when extracting biologically relevant features from the data,
compared with other methods. Hence iPANDA may be a useful
tool, when used as input for machine learning algorithms to make
better prediction models.

Discussion
Application of the pathway activation measurement implemented
in iPANDA leads to significant noise reduction in the input data
and hence enhances the ability to produce highly consistent sets
of biologically relevant biomarkers acquired on multiple tran-
scriptomic data sets. Another advantage of the approach
presented is the high speed of the computation. The gene
grouping and topological weights are the most demanding parts
of the algorithm from the perspective of computational resources.
Luckily, these steps can be precalculated only once before the
actual calculations using transcriptomic data. The calculation
time for a single sample processing equals B1.4 s on the Intel (R)
Core i3-3217U 1.8 GHz CPU (compared with 10 min for SPIA,
4 min for DART, about 10 s for ssGSEA, GSEA and PLAGE).
Thus, iPANDA can be an efficient tool for high-throughput
biomarker screening of large transcriptomic data sets.

The use of merely microarray data for pathway activation
analysis has well-known limitations, as it cannot address
individual variations in the gene sequence and consequently in
the activity of its product. For example, a gene can have a
mutation that reduces activity of its product but elevates its
expression level through a negative feedback loop. Thus, the
elevated expression of the gene does not necessarily corresponds
with the increase in the activity of its product. Nevertheless,
comprehensive analysis of the tumour pathway activation profile
may be a more clinically relevant strategy to stratify the subset of

patients whose tumours could probably respond and who would
clinically benefit from anti-cancer therapeutic regimens than
other outcome prediction methods based on the gene expression
profile. While gene expression levels can be effectively used for
phenotype prediction, it is quite possible that the most
differentially expressed genes in a given signature will not be
part of the pathways that actually drive tumour behaviour.
Alternatively, expression of some genes within the cancer driving
pathways is not always predictive of the overall pathway
activation. Therefore, while there is no single preferential
approach for interpreting gene expression results, the proposed
method of transcriptomic data analysis on the signalling pathway
level may not only be useful for discrimination between various
biological or clinical conditions, but may aid in identifying
functional categories or pathways that may be relevant as possible
therapeutic targets.

Although the iPANDA algorithm was initially designed for
microarray data analysis, it can also be easily applied to the data
derived from genome-wide association studies (GWAS). In order
to do so, GWAS data can be converted to a form amenable for the
iPANDA algorithm. Single-point mutations are assigned to the
genes based on their proximity to the reading frames. Then each
single-point mutation is given a weight derived from a GWAS
data statistical analysis40. Simultaneous use of the GWAS data
along with microarray data may improve the predictions made by
the iPANDA method.

One of the rapidly emerging areas in biomedical data analysis
is deep learning41. Recently several successful studies on
microarray data analysis using various deep learning
approaches on gene-level data have surfaced42. Using pathway
activation scores may be an efficient way to reduce dimensionality
of transcriptomic data for drug discovery applications while
maintaining biological relevant features43. From an experimental
point of view, gene regulatory networks are controlled via
activation or inhibition of a specific set of signalling pathways.
Thus, using the iPANDA signalling pathway activation scores as
input for deep learning methods could bring results closer to
experimental settings and make them more interpretable to bench
biologists. One of the most difficult steps of multilayer perceptron
training is the dimension reduction and feature selection
procedures, which aim to generate the appropriate input for
further learning44. Signalling pathway activation scoring using
iPANDA will likely help reduce the dimensionality of expression
data without losing biological relevance and may be used as an
input to deep learning methods especially for drug discovery
applications. Using iPANDA values as an input data seems to be a
particularly promising approach to obtaining reproducible results
when analysing transcriptomic data from multiple sources.

Methods
Transcriptomic data. From the GEO database we have downloaded six data sets
containing gene expression data related to breast cancer patients treated with
paclitaxel and three data sets containing transcriptomic data from normal cancer-
free breast tissue which were used as a reference (Supplementary Table 2).

The breast cancer and normal data from different data sets was preprocessed
using GCRMA algorithm45 and summarized using updated chip definition files
from Brainarray repository (Version 18) (ref. 46) for each data set independently.

ERN breast cancer samples were stratified by the HER2 status: HER2-positive
(HER2P) and HER2-negative (HER2N). Only samples profiled before any
treatment were analysed. In this analysis, we included the samples from patients
who subsequently underwent paclitaxel (Taxol) treatment and showed any definite
therapy outcome (response or non-response) (Supplementary Table 3). Also,
GSE22513 breast cancer data set with known paclitaxel treatment outcome and
unspecified receptor status was utilized. It contains samples from 20 non-
responders and 8 responders patients.

The MicroArray Quality Control (MAQC) data set (GEO identifier 5350) was
obtained from the GEO database. The raw data for 60 samples from Affymetrix
platform was preprocessed using GCRMA algorithm45 and summarized using
updated chip definition files from Brainarray repository (Version 18) (ref. 46) for
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each data set independently. The preprocessed data for 60 samples from Agilent
platform was taken as provided by authors. These samples represent four different
groups: A¼ Stratagene Universal Human Reference RNA (UHRR, Catalog
#740000), Sample B¼Ambion Human Brain Reference RNA (HBRR, Catalog
#6050), Sample C¼ Samples A and B mixed at 75%:25% ratio (A:B); and Sample
D¼ Samples A and B mixed at 25%:75% ratio (A:B). Group A was used as a
reference.

Pathway database overview. There are several widely used collections of
signalling pathways including Kyoto Encyclopedia of Genes and Genomes, QIA-
GEN and NCI Pathway Interaction Database. In this study, we use the
collection of signalling pathways most strongly associated with various types of
malignant transformation in human cells obtained from the SABiosciences
collection (http://www.sabiosciences.com/pathwaycentral.php). Using a cancer-
specific pathway database ensures the presence of multiple pathway markers for the
particular phenotype of the breast cancer under investigation. The database
contains a set of 374 signalling pathways which cover a total of 2,294 unique genes.
Each pathway contains an explicitly defined topology represented as a directed
graph. Each node corresponds to a gene or a set of genes while edges describe
biochemical interactions between genes in nodes and/or their products. All
interactions are classified as activation or inhibition of downstream nodes. The
pathway size ranges from about twenty to over six hundred genes in a single
pathway.

Estimation of pathway activation. Our novel approach for large-scale
transcriptomic data analysis accounts for the gene grouping into modules based on
the precalculated gene coexpression data. Each gene module represents a set of
genes which experience significant coordination in their expression levels and/or
are regulated by the same expression factors (see grouping genes section below).
Therefore, the actual function for the calculation of the pathway p activation
according to the proposed iPANDA algorithm consists of two terms. While the first
one corresponds to the contribution of the individual genes, which are not
members of any module, the second one takes into account the contribution of the
gene modules. Therefore, the final function for obtaining an iPANDA value for the
activation of pathway p, which consists of the individual genes i and gene modules
j, has the following analytical form:

iPANDAp ¼
X

i

Gip þ
X

j

Mjp ð1Þ

The contribution of the individual genes (Gip) and the gene modules (Mjp) is
computed as follows:

Gip ¼ wS
i � wT

ip � Aip � log ðfciÞ ð2Þ

Mjp ¼ maxðwS
i Þ �

1
N

XN

i

wT
ip � Aip � log ðfciÞ

� �
ð3Þ

Here fci is the fold change of the expression level for the gene i in the sample under
study to the normal level (average in a control group). As the expression levels are
assumed to be logarithmically normally distributed and in order to convert the
product over fold change values to sum, logarithmic fold changes are utilized in the
final equation. Activation sign Aip is a discrete coefficient showing the direction in
which the particular gene affects the pathway given. It equals þ 1 if the product of
the gene i has a positive contribution to the pathway activation and � 1 if it has a
negative contribution. The factors wi

S and wip
T are the statistical and topological

weights of the gene i ranging from 0 to 1. The derivation procedure for these
factors is described in detail in the subsequent sections. Since log (fci) and Aip

values can be positive or negative, the iPANDA values for the pathways can also
have different signs. Thus, positive or negative iPANDA values correspond to
pathway activation or inhibition respectively. The principal scheme of the iPANDA
algorithm is shown in Fig. 1.

Obtaining gene importance factors. In order to estimate the topological weight
(wip

T), all possible walks through the gene network are calculated on the directed
graph associated with the pathway map. The nodes of the graph represent genes or
gene modules, while the edges correspond to biochemical interactions. The nodes
which have zero incoming edges are chosen as the starting points of the walks and
those which have zero outgoing edges are chosen as the final points. Loops are
forbidden during walks computation. The number of walks Nip through the
pathway p, which include gene i is calculated for each gene. Then wip

T is obtained as
the ratio of Nip to the maximum value of Njp over all gene unit in the pathway:

wT
ip ¼

Nip

maxðNjpÞ
ð4Þ

The statistical weight depends on the P values, which are calculated from t-test for
case and normal sets of samples for each gene. The method called P value
thresholding is commonly used to filter out spurious genes, which demonstrate no
significant differences between sets. However, a major issue with the use of sharp
threshold functions is that it can introduce an instability in filtered gene sets and as

a consequence in pathway activation scores between the data sets. Additionally, the
pathway activation values become sensitive to an arbitrary choice of the cutoff
value. In order to address this issue, we suggest using a smooth threshold function.
In the present study, the cosine function on logarithmic scale is utilized:

wS
i ¼

0; p4pmax

cos p log p� log pmin

log pmax � log pmin

� �
þ 1

� �.
2; pminop � pmax

1; p � pmin

8><
>: ð5Þ

where pmin and pmax are the low- and high-threshold values. In this study, P value
thresholds equal to 10� 7 and 10� 1, respectively. For the threshold values given
over 58% of all genes pass high threshold and about 12% also pass low threshold
for the breast cancer data under investigation. Hence, over 45% of the genes in the
data set receive intermediate wi

S values. Therefore more stable results for pathway
activation scores between data sets can be achieved using this approach.

Grouping genes into modules. To obtain the gene modules, two independent
sources of data were utilized: human database of coexpressed genes
COEXPRESdb21 and the database of the downstream genes controlled by human
sequence-specific transcription factors22. The latter was simply intersected with the
genes from the pathway database used, while correlation data from COEXPRESdb
was clustered using Euclidean distance matrix. Distances were obtained according
to the following equation:

rij ¼ 1� corrij ð6Þ
where corrij is correlation between expression levels of genes i and j. DBScan and
hierarchical clustering with an average linkage criteria were utilized to identify
clusters. Only clusters with an average internal pairwise correlation higher than 0.3
were considered. Clusters obtained from the transcription factors database and
coexpression database were recursively merged to remove duplicates. A pair of
clusters was combined into one during the merging procedure if the intersection
level between clusters had been higher than 0.7. As a result, a set of 169 gene
modules which includes a total of 1,021 unique genes was constructed.

Statistical credibility of the iPANDA values. The P values for the iPANDA
pathway activation scores are obtained using weighted Fisher’s combined
probability test. Thus the P values (pp) are estimated according to the following
equation:

lnðppÞ ¼

PN
i

wS
i � wT

ip � lnðpiÞ
� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i
ðwS

i � wT
ipÞ

2

s ð7Þ

where i refers to the particular member (individual gene or gene module) of the
pathway p, N is the number of pathway members, wi

S and wip
T are the topological

and statistical weights of the member i, pi is the group t-test P value for the member
i. Since the P values obtained are not used for further pathway marker scoring they
are not normalized in any way and rely solely on the statistics for the genes which
have non-zero statistical weights.

Algorithm robustness estimation. In order to quantitatively estimate the
robustness of the algorithm between data sets, we introduce the CMP index. The
CMP index is a function of the number of pathways considered as markers that are
common between data sets. It also depends on the quality of the treatment
response prediction when these pathways are used as classifiers. The CMP index is
defined as follows:

CMP ¼ 1
n

Xn

j¼1

X
i

lnðNiÞ�ðAUCij �AUCRÞ ð8Þ

where n is the number of data sets under study, Ni is the number of genes in the
pathway i and AUCij is the value of the receiver operating characteristic area under
curve, which shows the quality of the separation between responders and non-
responders to treatment when pathway i is used as classifier for the j-th data set.
AUCR is the AUC value for a random classifier and equals to 0.5. A pathway is
considered as a marker if its AUC value is higher than 0.75. The ln(Ni) term is
included to increase the contribution of the larger pathways because they have a
smaller probability to randomly get a high AUC value. The larger values of the
CMP index correspond to the most robust prediction of pathway markers
across the data sets under investigation, while zero value of CMP index corre-
sponds to the empty intersection of the pathway marker lists obtained for the
different data sets.

Prediction model development. In order to apply iPANDA to the paclitaxel
treatment response prediction over a several independent data sets, the pathway
activation values were normalized to the Z-scores independently for each data set.
The expected values used for the Z-scoring procedure were adjusted to the number
of responders and non-responders in the data set under study. For each end point
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described in the result section, random forest classifiers were trained using
pathway-activation scores or gene-level data for training set. Then the predictive
power of the models was evaluated using validation set. RandomForest function
from bioconductoR repository (version 4.6–12) with default settings was utilized to
train and run the models (https://cran.r-project.org/web/packages/randomForest/
index.html).

To assess the quality of prediction models several metrics including TP—the
number of responders samples identified as responders, FP—the number of
responders identified as non-responders, FN—the number of non-responders
identified as responders, TN—the number of non-responders identified as
non-responders, MCC—Matthews correlation coefficient, ACC—accuracy,
TRP—sensitivity and SPC—specificity were utilized.

Performing calculations using third party algorithms. In order to assess the
results obtained with iPANDA algorithm from the perspective of modern advances
in the pathway-based transcriptomic data analysis widely used third-party packages
were selected for the comparison. The GSEA, single sample version of GSEA
(ssGSEA) and SPIA packages were chosen as the most commonly used. PLAGE
was selected as the best performing method in the recently proposed pathway
analysis method benchmarking approach25. DART was reported to perform well
specifically on breast cancer data and hence was chosen for the analysis.

We used java GSEA package downloaded from the GSEA official web site
(www.broadinstitute.org/gsea/index.jsp). All the input data files were prepared
according to the GSEA User guide available at http://software.broadinstitute.org/
gsea/doc/GSEAUserGuideFrame.html. Only expression levels for differentially
expressed genes (group t-test P value o0.05) were used as the input. The pathway
database was converted to the GSEA file format using the same package. All the
calculations were run from the command line for each tumour sample versus all
available normal samples for the particular data set. The parameter ‘Number of
permutations’ was set to 1,000, ‘Collapse data set to gene symbols’ was set to ‘false’,
‘Permutation type’ was set to ‘gene_set’, ‘Enrichment statistics’ was set to
‘weighted’, ‘Scoring scheme’ was set to ‘weighted’, ‘Metric for ranking genes’ was set
to ‘Signal2Noise’, ‘Gene list sorting mode’ was set to ‘real’, ‘Gene list ordering
mode’ was set to ‘descending’, ‘Collapsing mode for probe sets’ was set to
‘max_probe’, ‘Normalization mode’ was set to ‘meandiv’, ‘Randomization mode’
was set to ‘no balance’. Normalized enrichment score values were extracted from
GSEA report for further analysis.

SPIA R package was downloaded from Bioconductor Web site according to the
instructions on the SPIA Bioconductor page (http://bioconductor.org/packages/
release/bioc/html/SPIA.html). The pathway database was converted to the SPIA file
format using the same package. Fold changes between each tumour sample and the
mean over the whole set of normal samples for the differentially expressed genes
(group t-test P value o0.05) were used as the input for the calculations. The total
net accumulation perturbation (tA) values for each pathway were extracted from
SPIA output for further analysis. All the steps of further pathway analysis using
GSEA and SPIA algorithms were similar to the ones used for the analysis
performed using iPANDA algorithm. The use of tA values for comparison with
other methods has certain limitations. tA is only half of the evidence that SPIA
considers and is independent of the information about the overall amount of
differential expression in the pathway that the other methods use. Besides, tA is
based on information derived only from the genes in the pathway that are
connected with certain type of relations documented in Kyoto Encyclopedia of
Genes and Genomes, while all other methods use information from all genes in the
pathway. Nevertheless, SPIA tA values are the only metric besides the iPANDA
values, which surpasses gene-level cross-platform correlations between MAQC-I
samples and demonstrates better performance when used in phenotype prediction
models comparing with gene-level data.

DART R package (version 1.20.0) was downloaded from bioconductoR
repository (https://www.bioconductor.org/packages/release/bioc/html/DART.html).
From all studied breast cancer samples, we constructed a normalized gene
expression data matrix with logarithmic gene expression values. DART was run
independently for each signalling pathway. Each pathway was given to DART as a
Model Signature—a numeric vector (in our case, having þ 1 and � 1 values)
reflecting if a gene contributes positively or negatively to the pathway. Relevance
network was calculated with the default fdr¼ 0.000001 threshold for correlations
between gene expressions. According to DART usage guidelines, we evaluated gene
network consistency and pruned each network. We next predicted pathway
activation scores in every sample for a given pruned gene network (reflecting a
single signalling pathway) and gene expression matrix. Remarkably, DART doesnot
construct gene networks for the pathways in which no gene pair has significant
correlation—that is why for these pathways activation scores were set to 0 in each
sample. Calculated activation scores for each pathway and each sample were
constructed to a numeric matrix.

ssGSEA is a single sample extension of GSEA that allows one to define an
enrichment score of a gene set in each sample within a given data set27. PLAGE26 is
a singular value decomposition-based pathway analysis method similar to GSEA.
Both of these methods can be used to develop phenotype prediction models based
on transcriptomics. ssGSEA and PLAGE were run with default settings from
GSVA18 package (version 1.16.0) in bioconductoR repository. Cancer-specific
pathways database was used as gene sets. We used logarithmic rank-normalized

gene expression data of normal and tumour samples as an input to ssGSEA and
PLAGE.

Preprocessing of MAQC-II data sets. Three data sets of MAQC-II (GSE20194,
GSE24080, GSE49710) and normal samples from GSE9574, GSE13591, GSE19422
as corresponding controls obtained using the same profiling platform were
downloaded from GEO13.

Breast cancer and multiple myeloma data with corresponding normal samples
were processed using AFFY (version 1.46.1) and FRMA (version 1.20.0) algorithms
from bioconductoR repository. Neuroblastoma data and corresponding normal
samples were processed using SCAN.UPS (version 2.10.9) from bioconductoR
repository. We divided data into training and validation groups according to the
original MAQC-II experiment design47.

iPANDA scores were calculated for all samples from three cancer-related data
sets used in MAQC-II study separately for training and validation sets. Statistical
weights were calculated for the whole group of tumour samples compared with
corresponding normal samples for training and validation groups independently.

In order to build a prediction model for iPANDA scores we used random forest
algorithm implemented in randomForest package from bioconductoR repository
(version 4.6–12). All the parameters were set as recommended by default. For each
phenotype iPANDA scores for MAQC-II training data sets were used as an input
to random forest to make a prediction on 10 MAQC-II end points.

MaPredictDSC (IMPROVER). MaPredictDSC (version 1.6.0), the best method
from IMPROVER DSC challenge24, was downloaded from bioconductoR
repository. Logarithmic gene expression data was used as input for maPredictDSC.
LDA and kNN classifier type, t-test and moderate t-test were applied during
maPredictDSC run. CVP¼ 2,NF¼ 4, NR¼ 1,FCT¼ 1.0 were applied during
predictDSC run. The best performing model was selected using validation data sets
according to AUC performance metrics. AggregateDSC mode was used to combine
the prediction of several models (crowd).

Data availability. The code of iPANDA package is deposited to github repository
(https://github.com/varnivey/ipanda) and is freely available for academic use.
Transcriptomic data sets that support the findings of this study are publicly
available from the GEO data sets website (http://www.ncbi.nlm.nih.gov/geo/) using
corresponding accession numbers.
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